-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "[sharktank] Revert "[llama] Added the fused rotary embedding …
…kernel (#719)" (#752)" (#828) This reverts commit 63ff841. # Description Our [user docs](https://github.com/nod-ai/shark-ai/blob/main/docs/shortfin/llm/user/llama_serving.md) started producing repetitive output: ```bash curl http://localhost:8003/generate \ -H "Content-Type: application/json" \ -d '{ "text": "Name the capital of the United States.", "sampling_params": {"max_completion_tokens": 50} }' data: Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington ``` After bisecting, the problematic commit was found to be 63ff841. Without commit reverted: ```bash curl http://localhost:8003/generate \ -H "Content-Type: application/json" \ -d '{ "text": "Name the capital of the United States.", "sampling_params": {"max_completion_tokens": 50} }' data: Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington, D.C.! Washington ``` With commit reverted: ```bash curl http://localhost:8003/generate \ -H "Content-Type: application/json" \ -d '{ "text": "Name the capital of the United States.", "sampling_params": {"max_completion_tokens": 50} }' data: Washington D.C. is the capital of the United States. Washington D.C. is a special district that is not part of any state but is the capital of the United States. Washington D.C. is a federal district that serves as the seat of the ```
- Loading branch information
Showing
10 changed files
with
206 additions
and
68 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
# Copyright 2024 Advanced Micro Devices, Inc. | ||
# | ||
# Licensed under the Apache License v2.0 with LLVM Exceptions. | ||
# See https://llvm.org/LICENSE.txt for license information. | ||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
|
||
from sharktank.kernels.base import * | ||
|
||
__all__ = [ | ||
"apply_rotary_embedding", | ||
] | ||
|
||
|
||
@CustomOp.register(library=LIBRARY) | ||
class apply_rotary_embedding(CustomOp): | ||
|
||
signature = "apply_rotary_embedding(Tensor input, Tensor table) -> (Tensor)" | ||
|
||
def select(self, ksel: KernelSelection): | ||
inputs_desc = ksel.arg_tensor(0) | ||
table_desc = ksel.arg_tensor(1) | ||
out_desc = ksel.return_new_tensor( | ||
inputs_desc.t.shape, dtype=inputs_desc.t.dtype | ||
) | ||
specialize_all_known_dims(inputs_desc) | ||
specialize_all_known_dims(table_desc) | ||
specialize_all_known_dims(out_desc) | ||
|
||
def generate(self, ksel: KernelSelection, kb: KernelBuilder): | ||
|
||
input = kb.arg_value(0) | ||
table = kb.arg_value(1) | ||
|
||
input_tensor_type = RankedTensorType(input.type) | ||
table_tensor_type = RankedTensorType(table.type) | ||
|
||
input_asm_type, input_ident, input_dtype = unpack_tensor_type(input.type) | ||
table_asm_type, table_ident, table_dtype = unpack_tensor_type(table.type) | ||
|
||
assert input_dtype == table_dtype | ||
|
||
# Generate specialization signature and types. | ||
bs = input.type.shape[0] | ||
sl = input.type.shape[1] | ||
sl = "D" if sl < 0 else sl | ||
heads = input.type.shape[2] | ||
dims = input.type.shape[3] | ||
|
||
template_file = "rotary_embedding.mlir" | ||
target_function_name = ( | ||
f"sharktank_rotary_embedding_{bs}_{sl}_{heads}_{dims}_{input_dtype}" | ||
) | ||
|
||
# Template params. | ||
input_tensor_type = input_asm_type | ||
table_tensor_type = table_asm_type | ||
|
||
target_function = inline_template_function( | ||
kb, | ||
template_file, | ||
target_function_name, | ||
input_tensor_type=input_tensor_type, | ||
table_tensor_type=table_tensor_type, | ||
bs=bs, | ||
sl=sl, | ||
heads=heads, | ||
dims=dims, | ||
dtype=str(input_dtype), | ||
) | ||
kb.yield_results(*call_function(target_function, *kb.arg_bindings)) |
63 changes: 63 additions & 0 deletions
63
sharktank/sharktank/kernels/templates/rotary_embedding.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
// Copyright 2024 Advanced Micro Devices, Inc. | ||
// | ||
// Licensed under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
|
||
!input_tensor_type = {{input_tensor_type}} | ||
!table_tensor_type = {{table_tensor_type}} | ||
|
||
module { | ||
|
||
util.func private @sharktank_rotary_embedding_{{bs}}_{{sl}}_{{heads}}_{{dims}}_{{dtype}}(%input: !input_tensor_type, %table: !table_tensor_type) -> !input_tensor_type { | ||
|
||
%c0 = arith.constant 0 : index | ||
%c1 = arith.constant 1 : index | ||
%c2 = arith.constant 2 : index | ||
%c3 = arith.constant 3 : index | ||
|
||
|
||
%d0 = tensor.dim %input, %c0 : !input_tensor_type | ||
%d1 = tensor.dim %input, %c1 : !input_tensor_type | ||
%d2 = tensor.dim %input, %c2 : !input_tensor_type | ||
%d3 = tensor.dim %input, %c3 : !input_tensor_type | ||
|
||
%empty_dyn = tensor.empty(%d0, %d1, %d2, %d3) : tensor<?x?x?x?x{{dtype}}> | ||
%empty = tensor.cast %empty_dyn : tensor<?x?x?x?x{{dtype}}> to {{input_tensor_type}} | ||
|
||
%result = linalg.generic { | ||
indexing_maps = [ | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>, | ||
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> | ||
], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%table : !table_tensor_type ) | ||
outs(%empty : !input_tensor_type) { | ||
^bb0(%b0 : {{dtype}} , %b1 : {{dtype}}): | ||
%0 = linalg.index 0 : index | ||
%1 = linalg.index 1 : index | ||
%2 = linalg.index 2 : index | ||
%3 = linalg.index 3 : index | ||
%div = arith.divui %3, %c2 : index | ||
%mod = arith.remui %3, %c2 : index | ||
%a_cosb = math.cos %b0 : {{dtype}} | ||
%a_sinb = math.sin %b0 : {{dtype}} | ||
%real_index = arith.muli %div, %c2 : index | ||
%imag_index = arith.addi %real_index, %c1 : index | ||
%real = tensor.extract %input[%0, %1, %2, %real_index] : !input_tensor_type | ||
%imag = tensor.extract %input[%0, %1, %2, %imag_index] : !input_tensor_type | ||
%cmp = arith.cmpi eq, %mod, %c0 : index | ||
%real_t0 = arith.mulf %real, %a_cosb : {{dtype}} | ||
%real_t1 = arith.mulf %imag, %a_sinb : {{dtype}} | ||
%real_t2 = arith.subf %real_t0, %real_t1 : {{dtype}} | ||
%imag_t0 = arith.mulf %imag, %a_cosb : {{dtype}} | ||
%imag_t1 = arith.mulf %real, %a_sinb : {{dtype}} | ||
%imag_t2 = arith.addf %imag_t0, %imag_t1 : {{dtype}} | ||
%val = arith.select %cmp, %real_t2, %imag_t2 : {{dtype}} | ||
linalg.yield %val : {{dtype}} | ||
} -> !input_tensor_type | ||
|
||
util.return %result : !input_tensor_type | ||
} | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.