Skip to content

Commit

Permalink
Drop unused code.
Browse files Browse the repository at this point in the history
  • Loading branch information
tsalo committed Aug 7, 2024
1 parent e9e75d6 commit 907b740
Showing 1 changed file with 0 additions and 80 deletions.
80 changes: 0 additions & 80 deletions src/fmripost_aroma/workflows/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,9 +288,7 @@ def init_single_run_wf(bold_file):
"""Set up a single-run workflow for fMRIPost-AROMA."""
from nipype.interfaces import utility as niu
from niworkflows.engine.workflows import LiterateWorkflow as Workflow
from niworkflows.interfaces.utility import KeySelect
from niworkflows.utils.spaces import Reference
from smriprep.workflows.outputs import init_template_iterator_wf

from fmripost_aroma.utils.bids import collect_derivatives, extract_entities
from fmripost_aroma.workflows.aroma import init_denoise_wf, init_ica_aroma_wf
Expand Down Expand Up @@ -417,84 +415,6 @@ def init_single_run_wf(bold_file):
]),
]) # fmt:skip

# Skip this for now
if config.workflow.denoise_method and spaces.get_spaces() and False:
templates = spaces.get_spaces()
template_iterator_wf = init_template_iterator_wf(
spaces=spaces,
sloppy=config.execution.sloppy,
)
template_iterator_wf.inputs.inputnode.anat2std_xfm = functional_cache[
'anat2outputspaces_xfm'
]
template_iterator_wf.inputs.inputnode.template = templates

# Now denoise the output-space BOLD data using ICA-AROMA
denoise_std_wf = init_denoise_wf(bold_file=bold_file)
denoise_std_wf.inputs.inputnode.skip_vols = skip_vols

workflow.connect([
(ica_aroma_wf, denoise_std_wf, [
('outputnode.mixing', 'inputnode.mixing'),
('outputnode.aroma_features', 'inputnode.classifications'),
]),
(template_iterator_wf, denoise_std_wf, [
('outputnode.space', 'inputnode.space'),
('outputnode.cohort', 'inputnode.cohort'),
('outputnode.res', 'inputnode.res'),
]),
]) # fmt:skip

if functional_cache['bold_outputspaces']:
# No transforms necessary
std_buffer = pe.Node(
KeySelect(
fields=['bold', 'bold_mask'],
keys=[str(space) for space in spaces.references],
),
name='std_buffer',
)
std_buffer.inputs.bold = functional_cache['bold_outputspaces']
std_buffer.inputs.bold_mask = functional_cache['bold_mask_outputspaces']
workflow.connect([
(template_iterator_wf, std_buffer, [('outputnode.space', 'key')]),
(std_buffer, denoise_std_wf, [
('bold', 'inputnode.bold_file'),
('bold_mask', 'inputnode.bold_mask'),
]),
]) # fmt:skip
else:
# Warp native BOLD to requested output spaces
xfms = [
functional_cache['hmc'],
functional_cache['boldref2fmap'],
functional_cache['bold2anat'],
]
all_xfms = pe.Node(niu.Merge(2), name='all_xfms')
all_xfms.inputs.in1 = xfms
workflow.connect([
(template_iterator_wf, all_xfms, [('outputnode.anat2std_xfm', 'in2')]),
]) # fmt:skip

resample_std_wf = init_resample_volumetric_wf(
bold_file=bold_file,
functional_cache=functional_cache,
run_stc=False,
name=_get_wf_name(bold_file, 'resample_std'),
)
workflow.connect([
(template_iterator_wf, resample_std_wf, [
('outputnode.space', 'inputnode.space'),
('outputnode.res', 'inputnode.res'),
('outputnode.cohort', 'inputnode.cohort'),
]),
(all_xfms, resample_std_wf, [('out', 'inputnode.transforms')]),
(resample_std_wf, denoise_std_wf, [
('outputnode.bold_std', 'inputnode.bold'),
('outputnode.bold_mask_std', 'inputnode.bold_mask'),
]),
]) # fmt:skip

return workflow


Expand Down

0 comments on commit 907b740

Please sign in to comment.