Skip to content
This repository has been archived by the owner on Dec 20, 2024. It is now read-only.

ENH: Add gaussian process DWI signal representation notebook #202

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 186 additions & 0 deletions docs/notebooks/dwi_gp.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "Gaussian process notebook",
"id": "486923b289155658"
},
{
"metadata": {},
"cell_type": "code",
"source": [
"import tempfile\n",
"from pathlib import Path\n",
"\n",
"import numpy as np\n",
"from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel\n",
"\n",
"from eddymotion import model\n",
"from eddymotion.data.dmri import DWI\n",
"from eddymotion.data.splitting import lovo_split\n",
"\n",
"datadir = Path(\"../../test\") # Adapt to your local path or download to a temp location using wget\n",
"\n",
"kernel = DotProduct() + WhiteKernel()\n",
"\n",
"dwi = DWI.from_filename(datadir / \"dwi.h5\")\n",
"\n",
"_dwi_data = dwi.dataobj\n",
"# Use a subset of the data for now to see that something is written to the\n",
"# output\n",
"# bvecs = dwi.gradients[:3, :].T\n",
"bvecs = dwi.gradients[:3, 10:13].T # b0 values have already been masked\n",
"# bvals = dwi.gradients[3:, 10:13].T # Only for inspection purposes: [[1005.], [1000.], [ 995.]]\n",
"dwi_data = _dwi_data[60:63, 60:64, 40:45, 10:13]\n",
"\n",
"# ToDo\n",
"# Provide proper values/estimates for these\n",
"a = 1\n",
"h = 1 # should be a NIfTI image\n",
"\n",
"num_iterations = 5\n",
"gp = model.GaussianProcessModel(\n",
" dwi=dwi, a=a, h=h, kernel=kernel, num_iterations=num_iterations\n",
")\n",
"indices = list(range(bvecs.shape[0]))\n",
"# ToDo\n",
"# This should be done within the GP model class\n",
"# Apply lovo strategy properly\n",
"# Vectorize and parallelize\n",
"result_mean = np.zeros_like(dwi_data)\n",
"result_stddev = np.zeros_like(dwi_data)\n",
"for idx in indices:\n",
" lovo_idx = np.ones(len(indices), dtype=bool)\n",
" lovo_idx[idx] = False\n",
" X = bvecs[lovo_idx]\n",
" for i in range(dwi_data.shape[0]):\n",
" for j in range(dwi_data.shape[1]):\n",
" for k in range(dwi_data.shape[2]):\n",
" # ToDo\n",
" # Use a mask to avoid traversing background data\n",
" y = dwi_data[i, j, k, lovo_idx]\n",
" gp.fit(X, y)\n",
" pred_mean, pred_stddev = gp.predict(\n",
" bvecs[idx, :][np.newaxis]\n",
" ) # Can take multiple values X[:2, :]\n",
" result_mean[i, j, k, idx] = pred_mean.item()\n",
" result_stddev[i, j, k, idx] = pred_stddev.item()"
],
"id": "da2274009534db61",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "markdown",
"source": "Plot the data",
"id": "77e77cd4c73409d3"
},
{
"metadata": {},
"cell_type": "code",
"source": [
"from matplotlib import pyplot as plt \n",
"%matplotlib inline\n",
"\n",
"s = dwi_data[1, 1, 2, :]\n",
"s_hat_mean = result_mean[1, 1, 2, :]\n",
"s_hat_stddev = result_stddev[1, 1, 2, :]\n",
"x = np.asarray(indices)\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.plot(x, s_hat_mean, c=\"orange\", label=\"predicted\")\n",
"plt.fill_between(\n",
" x.ravel(),\n",
" s_hat_mean - 1.96 * s_hat_stddev,\n",
" s_hat_mean + 1.96 * s_hat_stddev,\n",
" alpha=0.5,\n",
" color=\"orange\",\n",
" label=r\"95% confidence interval\",\n",
")\n",
"plt.scatter(x, s, c=\"b\", label=\"ground truth\")\n",
"ax.set_xlabel(\"bvec indices\")\n",
"ax.set_ylabel(\"signal\")\n",
"ax.legend()\n",
"plt.title(\"Gaussian process regression on dataset\")\n",
"\n",
"plt.show()"
],
"id": "4e51f22890fb045a",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "markdown",
"source": [
"Plot the DWI signal for a given voxel\n",
"Compute the DWI signal value wrt the b0 (how much larger/smaller is and add that delta to the unit sphere?) for each bvec direction and plot that?"
],
"id": "694a4c075457425d"
},
{
"metadata": {},
"cell_type": "code",
"source": [
"# from mpl_toolkits.mplot3d import Axes3D\n",
"# fig, ax = plt.subplots()\n",
"# ax = fig.add_subplot(111, projection='3d')\n",
"# plt.scatter(xx, yy, zz)"
],
"id": "bb7d2aef53ac99f0",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "markdown",
"source": "Plot the DWI signal brain data\n",
"id": "62d7bc609b65c7cf"
},
{
"metadata": {},
"cell_type": "code",
"source": "# plot_dwi(dmri_dataset.dataobj, dmri_dataset.affine, gradient=data_test[1], black_bg=True)",
"id": "edb0e9d255516e38",
"outputs": [],
"execution_count": null
},
{
"metadata": {},
"cell_type": "markdown",
"source": "Plot the predicted DWI signal",
"id": "1a52e2450fc61dc6"
},
{
"metadata": {},
"cell_type": "code",
"source": "# plot_dwi(predicted, dmri_dataset.affine, gradient=data_test[1], black_bg=True);",
"id": "66150cf337b395e0",
"outputs": [],
"execution_count": null
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading
Loading