This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Add gaussian process DWI signal representation notebooks
Add gaussian process DWI signal representation notebooks: - One of the notebooks uses a simulated DWI signal. - The second notebook uses a real DWI signal.
- Loading branch information
1 parent
8c0bf36
commit f363635
Showing
2 changed files
with
473 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"metadata": {}, | ||
"cell_type": "markdown", | ||
"source": "Gaussian process notebook", | ||
"id": "486923b289155658" | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "code", | ||
"source": [ | ||
"import tempfile\n", | ||
"from pathlib import Path\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel\n", | ||
"\n", | ||
"from eddymotion import model\n", | ||
"from eddymotion.data.dmri import DWI\n", | ||
"from eddymotion.data.splitting import lovo_split\n", | ||
"\n", | ||
"datadir = Path(\"../../test\") # Adapt to your local path or download to a temp location using wget\n", | ||
"\n", | ||
"kernel = DotProduct() + WhiteKernel()\n", | ||
"\n", | ||
"dwi = DWI.from_filename(datadir / \"dwi.h5\")\n", | ||
"\n", | ||
"_dwi_data = dwi.dataobj\n", | ||
"# Use a subset of the data for now to see that something is written to the\n", | ||
"# output\n", | ||
"# bvecs = dwi.gradients[:3, :].T\n", | ||
"bvecs = dwi.gradients[:3, 10:13].T # b0 values have already been masked\n", | ||
"# bvals = dwi.gradients[3:, 10:13].T # Only for inspection purposes: [[1005.], [1000.], [ 995.]]\n", | ||
"dwi_data = _dwi_data[60:63, 60:64, 40:45, 10:13]\n", | ||
"\n", | ||
"# ToDo\n", | ||
"# Provide proper values/estimates for these\n", | ||
"a = 1\n", | ||
"h = 1 # should be a NIfTI image\n", | ||
"\n", | ||
"num_iterations = 5\n", | ||
"gp = model.GaussianProcessModel(\n", | ||
" dwi=dwi, a=a, h=h, kernel=kernel, num_iterations=num_iterations\n", | ||
")\n", | ||
"indices = list(range(bvecs.shape[0]))\n", | ||
"# ToDo\n", | ||
"# This should be done within the GP model class\n", | ||
"# Apply lovo strategy properly\n", | ||
"# Vectorize and parallelize\n", | ||
"result_mean = np.zeros_like(dwi_data)\n", | ||
"result_stddev = np.zeros_like(dwi_data)\n", | ||
"for idx in indices:\n", | ||
" lovo_idx = np.ones(len(indices), dtype=bool)\n", | ||
" lovo_idx[idx] = False\n", | ||
" X = bvecs[lovo_idx]\n", | ||
" for i in range(dwi_data.shape[0]):\n", | ||
" for j in range(dwi_data.shape[1]):\n", | ||
" for k in range(dwi_data.shape[2]):\n", | ||
" # ToDo\n", | ||
" # Use a mask to avoid traversing background data\n", | ||
" y = dwi_data[i, j, k, lovo_idx]\n", | ||
" gp.fit(X, y)\n", | ||
" pred_mean, pred_stddev = gp.predict(\n", | ||
" bvecs[idx, :][np.newaxis]\n", | ||
" ) # Can take multiple values X[:2, :]\n", | ||
" result_mean[i, j, k, idx] = pred_mean.item()\n", | ||
" result_stddev[i, j, k, idx] = pred_stddev.item()" | ||
], | ||
"id": "da2274009534db61", | ||
"outputs": [], | ||
"execution_count": null | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "markdown", | ||
"source": "Plot the data", | ||
"id": "77e77cd4c73409d3" | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "code", | ||
"source": [ | ||
"from matplotlib import pyplot as plt \n", | ||
"%matplotlib inline\n", | ||
"\n", | ||
"s = dwi_data[1, 1, 2, :]\n", | ||
"s_hat_mean = result_mean[1, 1, 2, :]\n", | ||
"s_hat_stddev = result_stddev[1, 1, 2, :]\n", | ||
"x = np.asarray(indices)\n", | ||
"\n", | ||
"fig, ax = plt.subplots()\n", | ||
"ax.plot(x, s_hat_mean, c=\"orange\", label=\"predicted\")\n", | ||
"plt.fill_between(\n", | ||
" x.ravel(),\n", | ||
" s_hat_mean - 1.96 * s_hat_stddev,\n", | ||
" s_hat_mean + 1.96 * s_hat_stddev,\n", | ||
" alpha=0.5,\n", | ||
" color=\"orange\",\n", | ||
" label=r\"95% confidence interval\",\n", | ||
")\n", | ||
"plt.scatter(x, s, c=\"b\", label=\"ground truth\")\n", | ||
"ax.set_xlabel(\"bvec indices\")\n", | ||
"ax.set_ylabel(\"signal\")\n", | ||
"ax.legend()\n", | ||
"plt.title(\"Gaussian process regression on dataset\")\n", | ||
"\n", | ||
"plt.show()" | ||
], | ||
"id": "4e51f22890fb045a", | ||
"outputs": [], | ||
"execution_count": null | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "markdown", | ||
"source": [ | ||
"Plot the DWI signal for a given voxel\n", | ||
"Compute the DWI signal value wrt the b0 (how much larger/smaller is and add that delta to the unit sphere?) for each bvec direction and plot that?" | ||
], | ||
"id": "694a4c075457425d" | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "code", | ||
"source": [ | ||
"# from mpl_toolkits.mplot3d import Axes3D\n", | ||
"# fig, ax = plt.subplots()\n", | ||
"# ax = fig.add_subplot(111, projection='3d')\n", | ||
"# plt.scatter(xx, yy, zz)" | ||
], | ||
"id": "bb7d2aef53ac99f0", | ||
"outputs": [], | ||
"execution_count": null | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "markdown", | ||
"source": "Plot the DWI signal brain data\n", | ||
"id": "62d7bc609b65c7cf" | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "code", | ||
"source": "# plot_dwi(dmri_dataset.dataobj, dmri_dataset.affine, gradient=data_test[1], black_bg=True)", | ||
"id": "edb0e9d255516e38", | ||
"outputs": [], | ||
"execution_count": null | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "markdown", | ||
"source": "Plot the predicted DWI signal", | ||
"id": "1a52e2450fc61dc6" | ||
}, | ||
{ | ||
"metadata": {}, | ||
"cell_type": "code", | ||
"source": "# plot_dwi(predicted, dmri_dataset.affine, gradient=data_test[1], black_bg=True);", | ||
"id": "66150cf337b395e0", | ||
"outputs": [], | ||
"execution_count": null | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.