Skip to content
This repository has been archived by the owner on Dec 20, 2024. It is now read-only.

Commit

Permalink
sty: add type hints and improve docstrings
Browse files Browse the repository at this point in the history
  • Loading branch information
oesteban committed Apr 10, 2024
1 parent 4bac36b commit a68c3af
Showing 1 changed file with 128 additions and 42 deletions.
170 changes: 128 additions & 42 deletions src/eddymotion/data/filtering.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,77 +21,138 @@
# https://www.nipreps.org/community/licensing/
#
"""Filtering data."""
from __future__ import annotations

from numbers import Number

def gaussian_filter(data, vox_width):
import numpy as np
from nibabel import Nifti1Image, load
from scipy.ndimage import gaussian_filter as _gs
from scipy.ndimage import map_coordinates, median_filter
from skimage.morphology import ball


def gaussian_filter(
data: np.ndarray,
vox_width: float | tuple[float, float, float],
) -> np.ndarray:
"""
Apply a Gaussian smoothing filter of a given width (in voxels)
Applies a Gaussian smoothing filter to a n-dimensional array.
This function smooths the input data using a Gaussian filter with a specified
width (sigma) in voxels along each relevant dimension. It automatically
handles different data dimensionalities (2D, 3D, or 4D) and ensures that
smoothing is not applied along the time or orientation dimension (if present
in 4D data).
Parameters
----------
data : :obj:`numpy.ndarray`
The input image's data array
vox_width : :obj:`numbers.Number` or :obj:`tuple` or :obj:`list`
The smoothing kernel width in voxels
data : :obj:`~numpy.ndarray`
The input data array.
vox_width : :obj:`float` or :obj:`tuple` of three :obj:`float`
The smoothing kernel width (sigma) in voxels. If a single :obj:`float` is provided,
it is applied uniformly across all spatial dimensions. Alternatively, a
tuple of three floats can be provided to specify different sigma values
for each spatial dimension (x, y, z).
Returns
-------
data : :obj:`numpy.ndarray`
The smoothed dataset
:obj:`~numpy.ndarray`
The smoothed data array.
"""
from numbers import Number
import numpy as np
from scipy.ndimage import gaussian_filter as _gs

data = np.squeeze(data) # drop unused dimensions
data = np.squeeze(data) # Drop unused dimensions
ndim = data.ndim

if isinstance(vox_width, Number):
vox_width = tuple([vox_width] * min(3, ndim))

# Do not smooth across time/orientation
# Do not smooth across time/orientation (if present in 4D data)
if ndim == 4 and len(vox_width) == 3:
vox_width = (*vox_width, 0)

return _gs(data, vox_width)


def decimate(in_file, factor, smooth=True, order=3, nonnegative=True):
from numbers import Number
import numpy as np
from scipy.ndimage import map_coordinates
import nibabel as nb
def decimate(
in_file: str,
factor: int | tuple[int, int, int],
smooth: bool | tuple[int, int, int] = True,
order: int = 3,
nonnegative: bool = True,
) -> Nifti1Image:
"""
Decimates a 3D or 4D Nifti image by a specified downsampling factor.
This function downsamples a Nifti image by averaging voxels within a user-defined
factor in each spatial dimension. It optionally applies Gaussian smoothing
before downsampling to reduce aliasing artifacts. The function also handles
updating the affine transformation matrix to reflect the change in voxel size.
Parameters
----------
in_file : :obj:`str`
Path to the input NIfTI image file.
factor : :obj:`int` or :obj:`tuple`
The downsampling factor. If a single integer is provided, it is applied
uniformly across all spatial dimensions. Alternatively, a tuple of three
integers can be provided to specify different downsampling factors for each
spatial dimension (x, y, z). Values must be greater than 0.
smooth : :obj:`bool` or :obj:`tuple`, optional (default=``True``)
Controls application of Gaussian smoothing before downsampling. If True,
a smoothing kernel size equal to the downsampling factor is applied.
Alternatively, a tuple of three integers can be provided to specify
different smoothing kernel sizes for each spatial dimension. Setting to
False disables smoothing.
order : :obj:`int`, optional (default=3)
The order of the spline interpolation used for downsampling. Higher
orders provide smoother results but are computationally more expensive.
nonnegative : :obj:`bool`, optional (default=``True``)
If True, negative values in the downsampled data are set to zero.
Returns
-------
:obj:`~nibabel.Nifti1Image`
The downsampled NIfTI image object.
"""

imnii = nb.load(in_file)
data = np.squeeze(imnii.get_fdata())
imnii = load(in_file)
data = np.squeeze(imnii.get_fdata()) # Remove unused dimensions
datashape = data.shape
ndim = data.ndim

if isinstance(factor, Number):
factor = tuple([factor] * min(3, ndim))

if any(f <= 0 for f in factor[:3]):
raise ValueError("All spatial downsampling factors must be positive.")

if ndim == 4 and len(factor) == 3:
factor = (*factor, 0)

if smooth:
if smooth is True:
smooth = factor

data = gaussian_filter(data, smooth)

# Create downsampled grid
down_grid = np.array(
np.meshgrid(
*[np.arange(_s, step=int(_f) or 1) for _s, _f in zip(datashape, factor)],
*[
np.arange(_s, step=int(_f) or 1) for _s, _f in zip(datashape, factor)
],
indexing="ij",
)
)
new_shape = down_grid.shape[1:]

# Update affine transformation
newaffine = imnii.affine.copy()
newaffine[:3, :3] = np.array(factor[:3]) * newaffine[:3, :3]
# newaffine[:3, 3] += imnii.affine[:3, :3] @ (0.5 / np.array(factor[:3], dtype="float32"))

# Resample data in the new grid
# Resample data on the new grid
resampled = map_coordinates(
data,
down_grid.reshape((ndim, np.prod(new_shape))),
Expand All @@ -101,43 +162,68 @@ def decimate(in_file, factor, smooth=True, order=3, nonnegative=True):
prefilter=True,
).reshape(new_shape)

# Set negative values to zero (optional)
if order > 2 and nonnegative:
resampled[resampled < 0] = 0

newnii = nb.Nifti1Image(resampled, newaffine, imnii.header)
# Create new Nifti image with updated information
newnii = Nifti1Image(resampled, newaffine, imnii.header)
newnii.set_sform(newaffine, code=1)
newnii.set_qform(newaffine, code=1)

return newnii


def advanced_clip(
data, p_min=35, p_max=99.98, nonnegative=True, dtype="int16", invert=False
):
data: np.ndarray,
p_min: float = 35,
p_max: float = 99.98,
nonnegative: bool = True,
dtype: str | np.dtype = "int16",
invert: bool = False,
) -> np.ndarray:
"""
Remove outliers at both ends of the intensity distribution and fit into a given dtype.
Clips outliers from a n-dimensional array and scales/casts to a specified data type.
This interface tries to emulate ANTs workflows' massaging that truncate images into
the 0-255 range, and applies percentiles for clipping images.
For image registration, normalizing the intensity into a compact range (e.g., uint8)
is generally advised.
This function removes outliers from both ends of the intensity distribution
in a n-dimensional array using percentiles. It optionally enforces non-negative
values and scales the data to fit within a specified data type (e.g., uint8
for image registration). To remove outliers more robustly, the function
first applies a median filter to the data before calculating clipping thresholds.
To more robustly determine the clipping thresholds, spikes are removed from data with
a median filter.
Once the thresholds are calculated, the denoised data are thrown away and the thresholds
are applied on the original image.
Parameters
----------
data : :obj:`~numpy.ndarray`
The input n-dimensional data array.
p_min : :obj:`float`, optional (default=35)
The lower percentile threshold for clipping. Values below this percentile
are set to the threshold value.
p_max : :obj:`float`, optional (default=99.98)
The upper percentile threshold for clipping. Values above this percentile
are set to the threshold value.
nonnegative : :obj:`bool`, optional (default=``True``)
If True, only consider non-negative values when calculating thresholds.
dtype : :obj:`str` or :obj:`~numpy.dtype`, optional (default=``"int16"``)
The desired data type for the output array. Supported types are "uint8"
and "int16".
invert : :obj:`bool`, optional (default=``False``)
If True, inverts the intensity values after scaling (1.0 - data).
Returns
-------
:obj:`~numpy.ndarray`
The clipped and scaled data array with the specified data type.
"""
import numpy as np
from scipy import ndimage
from skimage.morphology import ball

# Calculate stats on denoised version, to preempt outliers from biasing
denoised = ndimage.median_filter(data, footprint=ball(3))
# Calculate stats on denoised version to avoid outlier bias
denoised = median_filter(data, footprint=ball(3))

# Calculate percentile thresholds (handling non-negative values)
a_min = np.percentile(denoised[denoised > 0] if nonnegative else denoised, p_min)
a_max = np.percentile(denoised[denoised > 0] if nonnegative else denoised, p_max)

# Clip and cast
# Clip and scale data
data = np.clip(data, a_min=a_min, a_max=a_max)
data -= data.min()
data /= data.max()
Expand Down

0 comments on commit a68c3af

Please sign in to comment.