This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Add a script to plot the signal estimated by the GP
Add a script to plot the signal estimated by the GP as well as the error data generated by the error analysis script. Modify the signal visualization error plotting method to optionally accept the color the figure size parameters. Add methods to the the signal simulation module in order to serialize the dMRI data. Refactor the the the signal simulation module to: - Allow the dMRI signal generation method to generate evals randomly if not provided. - Allow reusing the polar random angle generation utility. - Allow the single tensor method to accept a random generator for the sake of reproducibility. - Set the `zip` function `strict` parameter to `True` as we want all iterables to have the same length. Modify the error analysis script to: - Reuse the `EddyMotionGPR` instance: factor it out from the CV function, as the instance does not change across folds and repeats. - Save the simulated signal and gtab. - Predict and save the signal of the GP estimation. - Save the simulated SNR to the CV scores data file. Since `None` indicates no noise, modify the `pandas` serialization method arguments so that `None` is not considered as a missing value. Take advantage of the commit to rename the `evals1` argument to `evals` in the error analysis script.
- Loading branch information
1 parent
796c501
commit 8d167f9
Showing
4 changed files
with
445 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright The NiPreps Developers <[email protected]> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
|
||
""" | ||
Plot the RMSE (mean and std dev) and prediction surface from the predicted DWI | ||
signal estimated using Gaussian processes k-fold cross-validation. | ||
""" | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import nibabel as nib | ||
import numpy as np | ||
import pandas as pd | ||
from dipy.core.gradients import gradient_table | ||
from dipy.io import read_bvals_bvecs | ||
|
||
from eddymotion.viz.signals import plot_error, plot_prediction_surface | ||
|
||
|
||
def _build_arg_parser() -> argparse.ArgumentParser: | ||
""" | ||
Build argument parser for command-line interface. | ||
Returns | ||
------- | ||
:obj:`~argparse.ArgumentParser` | ||
Argument parser for the script. | ||
""" | ||
parser = argparse.ArgumentParser( | ||
description=__doc__, formatter_class=argparse.RawTextHelpFormatter | ||
) | ||
parser.add_argument( | ||
"error_data_fname", | ||
help="Filename of TSV file containing the error data to plot", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"dwi_gt_data_fname", | ||
help="Filename of NIfTI file containing the ground truth DWI signal", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"bval_data_fname", | ||
help="Filename of b-val file containing the diffusion-encoding gradient b-vals", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"bvec_data_fname", | ||
help="Filename of b-vecs file containing the diffusion-encoding gradient b-vecs", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"dwi_pred_data_fname", | ||
help="Filename of NIfTI file containing the predicted DWI signal", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"error_plot_fname", | ||
help="Filename of SVG file where the error plot will be saved", | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"signal_surface_plot_fname", | ||
help="Filename of SVG file where the predicted signal plot will be saved", | ||
type=Path, | ||
) | ||
return parser | ||
|
||
|
||
def _parse_args(parser: argparse.ArgumentParser) -> argparse.Namespace: | ||
""" | ||
Parse command-line arguments. | ||
Parameters | ||
---------- | ||
parser : :obj:`~argparse.ArgumentParser` | ||
Argument parser for the script. | ||
Returns | ||
------- | ||
:obj:`~argparse.Namespace` | ||
Parsed arguments. | ||
""" | ||
return parser.parse_args() | ||
|
||
|
||
def main() -> None: | ||
"""Main function for running the experiment and plotting the results.""" | ||
parser = _build_arg_parser() | ||
args = _parse_args(parser) | ||
|
||
df = pd.read_csv(args.error_data_fname, sep="\t", keep_default_na=False, na_values="n/a") | ||
|
||
# Plot the prediction error | ||
kfolds = sorted(np.unique(df["n_folds"].values)) | ||
snr = np.unique(df["snr"].values).item() | ||
rmse_data = [df.groupby("n_folds").get_group(k)["rmse"].values for k in kfolds] | ||
axis = 1 | ||
mean = np.mean(rmse_data, axis=axis) | ||
std_dev = np.std(rmse_data, axis=axis) | ||
xlabel = "k" | ||
ylabel = "RMSE" | ||
title = f"Gaussian process estimation\n(SNR={snr})" | ||
fig = plot_error(kfolds, mean, std_dev, xlabel, ylabel, title) | ||
fig.savefig(args.error_plot_fname) | ||
plt.close(fig) | ||
|
||
# Plot the predicted DWI signal at a single voxel | ||
|
||
# Load the dMRI data | ||
signal = nib.load(args.dwi_gt_data_fname).get_fdata() | ||
y_pred = nib.load(args.dwi_pred_data_fname).get_fdata() | ||
|
||
bvals, bvecs = read_bvals_bvecs(str(args.bval_data_fname), str(args.bvec_data_fname)) | ||
gtab = gradient_table(bvals, bvecs) | ||
|
||
# Pick one voxel randomly | ||
rng = np.random.default_rng(1234) | ||
idx = rng.integers(0, signal.shape[0], size=1).item() | ||
|
||
title = "GP model signal prediction" | ||
fig, _, _ = plot_prediction_surface( | ||
signal[idx, ~gtab.b0s_mask], | ||
y_pred[idx], | ||
signal[idx, gtab.b0s_mask].item(), | ||
gtab[~gtab.b0s_mask].bvecs, | ||
gtab[~gtab.b0s_mask].bvecs, | ||
title, | ||
"gray", | ||
) | ||
fig.savefig(args.signal_surface_plot_fname, format="svg") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.