Skip to content
This repository has been archived by the owner on Dec 20, 2024. It is now read-only.

Commit

Permalink
fix: calculation of frame timings in the B-Spline scale
Browse files Browse the repository at this point in the history
  • Loading branch information
oesteban committed Dec 12, 2022
1 parent 6418112 commit 7f3172c
Show file tree
Hide file tree
Showing 3 changed files with 37 additions and 24 deletions.
35 changes: 20 additions & 15 deletions src/eddymotion/data/pet.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,8 +48,11 @@ class PET:
"""Best affine for RAS-to-voxel conversion of coordinates (NIfTI header)."""
brainmask = attr.ib(default=None, repr=_data_repr)
"""A boolean ndarray object containing a corresponding brainmask."""
timepoints = attr.ib(default=None, repr=_data_repr)
"""A 1D numpy array with the timing of each sample."""
frame_time = attr.ib(default=None, repr=_data_repr)
"""A 1D numpy array with the midpoint timing of each sample."""
total_duration = attr.ib(default=None, repr=_data_repr)
"""A float number represaenting the total duration of acquisition."""

em_affines = attr.ib(default=None)
"""
List of :obj:`nitransforms.linear.Affine` objects that bring
Expand Down Expand Up @@ -138,7 +141,7 @@ def from_filename(cls, filename):
def load(
filename,
brainmask_file=None,
frame_times=None,
frame_time=None,
frame_duration=None,
):
"""Load PET data."""
Expand All @@ -152,20 +155,22 @@ def load(
affine=img.affine,
)

if frame_times is not None:
retval.timepoints = np.array(frame_times, dtype="float32")
elif frame_duration:
retval.timepoints = np.array([
np.sum(frame_duration[:i])
for i in range(1, len(frame_duration) + 1)
])
else:
raise RuntimeError("Volume timings are necessary")
if frame_time is None:
raise RuntimeError(
"Start time of frames is mandatory (see https://bids-specification.readthedocs.io/"
"en/stable/glossary.html#objects.metadata.FrameTimesStart)"
)

frame_time = np.array(frame_time, dtype="float32") - frame_time[0]
if frame_duration is None:
frame_duration = np.diff(frame_time)
if len(frame_duration) == (retval.dataobj.shape[-1] - 1):
frame_duration = np.append(frame_duration, frame_duration[-1])

assert len(retval.timepoints) == retval.dataobj.shape[-1]
retval.total_duration = frame_time[-1] + frame_duration[-1]
retval.frame_time = frame_time + 0.5 * np.array(frame_duration, dtype="float32")

# Base at t=0 sec.
retval.timepoints = retval.timepoints - retval.timepoints[0]
assert len(retval.frame_time) == retval.dataobj.shape[-1]

if brainmask_file:
mask = nb.load(brainmask_file)
Expand Down
7 changes: 5 additions & 2 deletions src/eddymotion/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,11 @@ def fit(
if hasattr(dwdata, "gradients"):
kwargs["gtab"] = dwdata.gradients

if hasattr(dwdata, "timepoints"):
kwargs["timepoints"] = dwdata.timepoints
if hasattr(dwdata, "frame_time"):
kwargs["timepoints"] = dwdata.frame_time

if hasattr(dwdata, "total_duration"):
kwargs["xlim"] = dwdata.total_duration

index_order = np.arange(len(dwdata))
np.random.shuffle(index_order)
Expand Down
19 changes: 12 additions & 7 deletions src/eddymotion/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,9 +273,9 @@ def predict(self, gradient, **kwargs):
class PETModel:
"""A PET imaging realignment model based on B-Spline approximation."""

__slots__ = ("_t", "_x", "_order", "_coeff", "_mask", "_shape", "_n_ctrl")
__slots__ = ("_t", "_x", "_xlim", "_order", "_coeff", "_mask", "_shape", "_n_ctrl")

def __init__(self, timepoints=None, n_ctrl=None, mask=None, order=3, **kwargs):
def __init__(self, timepoints=None, xlim=None, n_ctrl=None, mask=None, order=3, **kwargs):
"""
Create the B-Spline interpolating matrix.
Expand All @@ -292,13 +292,19 @@ def __init__(self, timepoints=None, n_ctrl=None, mask=None, order=3, **kwargs):
model.
"""
if timepoints is None:
if timepoints is None or xlim is None:
raise TypeError("timepoints must be provided in initialization")

self._order = order
self._mask = mask

self._x = np.array(timepoints, dtype="float32")
self._xlim = xlim

if self._x[0] < 1e-2:
raise ValueError("First frame midpoint should not be zero or negative")
if self._x[-1] > (self._xlim - 1e-2):
raise ValueError("Last frame midpoint should not be equal or greater than duration")

# Calculate index coordinates in the B-Spline grid
self._n_ctrl = n_ctrl or (len(timepoints) // 4) + 1
Expand All @@ -314,9 +320,7 @@ def fit(self, data, *args, **kwargs):
n_jobs = kwargs.pop("n_jobs", None) or 1

timepoints = kwargs.get("timepoints", None) or self._x
x = (
(np.array(timepoints, dtype="float32") - self._x[0]) / self._x[-1]
) * self._n_ctrl
x = (np.array(timepoints, dtype="float32") / self._xlim) * self._n_ctrl

self._shape = data.shape[:3]

Expand Down Expand Up @@ -351,7 +355,8 @@ def predict(self, timepoint, **kwargs):
"""Return the *b=0* map."""
from scipy.interpolate import BSpline

x = ((timepoint - self._x[0]) / self._x[-1]) * self._n_ctrl
# Project sample timing into B-Spline coordinates
x = (timepoint / self._xlim) * self._n_ctrl
A = BSpline.design_matrix(x, self._t, k=self._order)

# A is 1 (num. timepoints) x C (num. coeff)
Expand Down

0 comments on commit 7f3172c

Please sign in to comment.