This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Add GP error analysis experiment script
Add GP error analysis experiment script.
- Loading branch information
1 parent
a7880a3
commit 62f13ba
Showing
1 changed file
with
302 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright 2024 The NiPreps Developers <[email protected]> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
|
||
""" | ||
Simulate the DWI signal from a single fiber and analyze the prediction error of an estimator using | ||
Gaussian processes. | ||
""" | ||
|
||
import argparse | ||
|
||
import numpy as np | ||
from dipy.core.geometry import sphere2cart | ||
from dipy.core.gradients import gradient_table | ||
from dipy.core.sphere import HemiSphere, Sphere, disperse_charges | ||
from dipy.sims.voxel import all_tensor_evecs, single_tensor | ||
from matplotlib import pyplot as plt | ||
from sklearn.metrics import root_mean_squared_error | ||
|
||
from eddymotion.model._dipy import GaussianProcessModel | ||
|
||
|
||
def add_b0(bvals, bvecs): | ||
"""Add a b0 signal to the diffusion-encoding gradient values and vectors.""" | ||
|
||
_bvals = np.insert(bvals, 0, 0) | ||
_bvecs = np.insert(bvecs, 0, np.array([0, 0, 0]), axis=0) | ||
|
||
return _bvals, _bvecs | ||
|
||
|
||
def create_single_fiber_evecs(): | ||
"""Create eigenvalues for a simulated single fiber.""" | ||
|
||
# Polar coordinates (theta, phi) of the principal axis of the tensor | ||
angles = np.array([0, 0]) | ||
sticks = np.array(sphere2cart(1, np.deg2rad(angles[0]), np.deg2rad(angles[1]))) | ||
evecs = all_tensor_evecs(sticks) | ||
|
||
return evecs | ||
|
||
|
||
def create_random_polar_coordinates(hsph_dirs, seed=1234): | ||
"""Create random polar coordinate values""" | ||
|
||
rng = np.random.default_rng(seed) | ||
theta = np.pi * rng.random(hsph_dirs) | ||
phi = 2 * np.pi * rng.random(hsph_dirs) | ||
|
||
return theta, phi | ||
|
||
|
||
def create_diffusion_encoding_gradient_dirs(hsph_dirs, iterations=5000, seed=1234): | ||
"""Create the dMRI gradient-encoding directions.""" | ||
|
||
# Create the gradient-encoding directions placing random points on a hemisphere | ||
theta, phi = create_random_polar_coordinates(hsph_dirs, seed=seed) | ||
hsph_initial = HemiSphere(theta=theta, phi=phi) | ||
|
||
# Move the points so that the electrostatic potential energy is minimized | ||
hsph_updated, _ = disperse_charges(hsph_initial, iterations) | ||
|
||
# Create a sphere | ||
return Sphere(xyz=np.vstack((hsph_updated.vertices, -hsph_updated.vertices))) | ||
|
||
|
||
def create_single_shell_gradient_table(hsph_dirs, bval_shell, iterations=5000): | ||
"""Create a single-shell gradient table.""" | ||
|
||
# Create diffusion-encoding gradient directions | ||
sph = create_diffusion_encoding_gradient_dirs(hsph_dirs, iterations=iterations) | ||
|
||
# Create the gradient bvals and bvecs | ||
vertices = sph.vertices | ||
values = np.ones(vertices.shape[0]) | ||
bvecs = vertices | ||
bvals = bval_shell * values | ||
|
||
# Add a b0 value to the gradient table | ||
bvals, bvecs = add_b0(bvals, bvecs) | ||
return gradient_table(bvals, bvecs) | ||
|
||
|
||
def get_query_vectors(gtab, train_mask): | ||
"""Get the diffusion-encoding gradient vectors where the signal is to be estimated from the | ||
gradient table and the training mask: the vectors of interest are those that are masked in | ||
the training mask. b0 values are excluded.""" | ||
|
||
idx = np.logical_and(~train_mask, ~gtab.b0s_mask) | ||
return gtab.bvecs[idx], np.where(idx)[0] | ||
|
||
|
||
def create_random_train_mask(gtab, size, seed=1234): | ||
"""Create a mask for the gradient table where a ``size`` number of indices will be | ||
excluded. b0 values are excluded.""" | ||
|
||
rng = np.random.default_rng(seed) | ||
|
||
# Get the indices of the non-zero diffusion-encoding gradient vector indices | ||
nnzero_degv_idx = np.where(~gtab.b0s_mask)[0] | ||
|
||
if nnzero_degv_idx.size < size: | ||
raise ValueError( | ||
f"Requested {size} values for masking; gradient table has {nnzero_degv_idx.size} " | ||
"non-zero diffusion-encoding gradient vectors. Reduce the number of masked values." | ||
) | ||
|
||
lo = rng.choice(nnzero_degv_idx, size=size, replace=False) | ||
|
||
# Exclude the b0s | ||
zero_degv_idx = np.asarray(list(set(range(len(gtab.bvals))).difference(nnzero_degv_idx))) | ||
lo = np.hstack([zero_degv_idx, lo]) | ||
|
||
train_mask = np.ones(len(gtab.bvals), dtype=bool) | ||
train_mask[lo] = False | ||
|
||
return train_mask | ||
|
||
|
||
def perform_experiment(gtab, S0, evals1, evecs, snr, repeats, kfold): | ||
"""Perform experiment: estimate the dMRI signal on a set of directions fitting a | ||
Gaussian process to the rest of the data.""" | ||
|
||
# Fix the random number generator for reproducibility when generating the | ||
# signal | ||
rng = np.random.default_rng(1234) | ||
|
||
# Define the Gaussian process model parameters | ||
kernel_model = "spherical" | ||
lambda_s = 2.0 | ||
a = 1.0 | ||
sigma_sq = 0.5 | ||
|
||
data = [] | ||
|
||
# Loop over the number of indices that are left out from the training/need to be predicted | ||
for n in kfold: | ||
# Define the Gaussian process model instance | ||
gp_model = GaussianProcessModel( | ||
kernel_model=kernel_model, lambda_s=lambda_s, a=a, sigma_sq=sigma_sq | ||
) | ||
|
||
# Create the training mask leaving out the requested number of samples | ||
train_mask = create_random_train_mask(gtab, n) | ||
|
||
# Simulate the fitting a number of times: every time the signal created will be a little | ||
# different | ||
for _ in range(repeats): | ||
# Create the DWI signal using a single tensor | ||
signal = single_tensor(gtab, S0=S0, evals=evals1, evecs=evecs, snr=snr, rng=rng) | ||
# Fit the Gaussian process | ||
gpfit = gp_model.fit(signal[train_mask], gtab[train_mask]) | ||
|
||
# Predict the signal | ||
X_qry, idx_qry = get_query_vectors(gtab, train_mask) | ||
_y_pred = gpfit.predict(X_qry) | ||
data.append((idx_qry, signal[idx_qry], _y_pred)) | ||
|
||
return data | ||
|
||
|
||
def compute_error(data, repeats, kfolds): | ||
"""Compute the error and standard deviation.""" | ||
|
||
mean_rmse = [] | ||
std_dev = [] | ||
|
||
# Loop over the range of indices that were predicted | ||
for n in range(len(kfolds)): | ||
_data = np.array(data[n * repeats : n * repeats + repeats]) | ||
_rmse = list(map(root_mean_squared_error, _data[:, 1], _data[:, 2])) | ||
_std_dev = np.std(_rmse) | ||
mean_rmse.append(np.mean(_rmse)) | ||
std_dev.append(_std_dev) | ||
|
||
return np.asarray(mean_rmse), np.asarray(std_dev) | ||
|
||
|
||
def plot_error(kfolds, mean, std_dev): | ||
"""Plot the error and standard deviation.""" | ||
|
||
fig, ax = plt.subplots() | ||
ax.plot(kfolds, mean, c="orange") | ||
ax.fill_between( | ||
kfolds, | ||
mean - std_dev, | ||
mean + std_dev, | ||
alpha=0.5, | ||
color="orange", | ||
) | ||
ax.scatter(kfolds, mean, c="orange") | ||
ax.set_xlabel("N") | ||
ax.set_ylabel("RMSE") | ||
ax.set_xticks(kfolds) | ||
ax.set_xticklabels(kfolds) | ||
ax.set_title("Gaussian process estimation") | ||
fig.tight_layout() | ||
|
||
return fig | ||
|
||
|
||
def _build_arg_parser(): | ||
parser = argparse.ArgumentParser( | ||
description=__doc__, formatter_class=argparse.RawTextHelpFormatter | ||
) | ||
parser.add_argument( | ||
"hsph_dirs", | ||
help="Number of diffusion gradient-encoding directions in the half sphere", | ||
type=int, | ||
) | ||
parser.add_argument( | ||
"bval_shell", | ||
help="Shell b-value", | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"S0", | ||
help="S0 value", | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--evals1", | ||
help="Eigenvalues of the tensor", | ||
nargs="+", | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--snr", | ||
help="Signal to noise ratio", | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--repeats", | ||
help="Number of repeats", | ||
type=int, | ||
default=5, | ||
) | ||
parser.add_argument( | ||
"--kfold", | ||
help="Number of directions to leave out/predict", | ||
nargs="+", | ||
type=int, | ||
) | ||
return parser | ||
|
||
|
||
def _parse_args(parser): | ||
args = parser.parse_args() | ||
|
||
return args | ||
|
||
|
||
def main(): | ||
parser = _build_arg_parser() | ||
args = _parse_args(parser) | ||
|
||
# create eigenvectors for a single fiber | ||
evecs = create_single_fiber_evecs() | ||
|
||
# Create a gradient table for a single-shell | ||
gtab = create_single_shell_gradient_table(args.hsph_dirs, args.bval_shell) | ||
|
||
# Estimate the dMRI signal using a Gaussian process estimator | ||
# ToDo | ||
# Returning the index here is not useful as we cannot plot the signal as it | ||
# changes on every fold and we do not return it. Maybe we can set a random | ||
# value so that we return that one and we can plot it much like in the | ||
# notebook or maybe we leave that for a separate script/notebook ?? | ||
data = perform_experiment( | ||
gtab, args.S0, args.evals1, evecs, args.snr, args.repeats, args.kfold | ||
) | ||
|
||
# Compute the error | ||
rmse, std_dev = compute_error(data, args.repeats, args.kfold) | ||
|
||
# Plot | ||
_ = plot_error(args.kfold, rmse, std_dev) | ||
# fig = plot_error(args.kfold, rmse, std_dev) | ||
# fig.save(args.gp_pred_plot_error_fname, format="svg") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |