This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
450 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,385 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "b395dedd-ae15-4788-9911-b9050e3ff784", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"from pathlib import Path\n", | ||
"import shutil\n", | ||
"import warnings\n", | ||
"\n", | ||
"from dipy.core.gradients import gradient_table\n", | ||
"\n", | ||
"from eddymotion import dmri\n", | ||
"from eddymotion.viz import plot_dwi\n", | ||
"\n", | ||
"%matplotlib inline" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "750f9a01-aac3-452e-8fec-0fcc4034d448", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"base_dir = Path(\"/Users/michael/projects/datasets/ds000206\")\n", | ||
"bids_dir = base_dir / \"bids\"\n", | ||
"derivatives_dir = base_dir / \"dmriprep\"\n", | ||
"\n", | ||
"dwi_file = bids_dir / \"sub-05\" / \"ses-JHU1\" / \"dwi\" / \"sub-05_ses-JHU1_acq-GD72_dwi.nii.gz\"\n", | ||
"bvec_file = bids_dir / \"sub-05\" / \"ses-JHU1\" / \"dwi\" / \"sub-05_ses-JHU1_acq-GD72_dwi.bvec\"\n", | ||
"bval_file = bids_dir / \"sub-05\" / \"ses-JHU1\" / \"dwi\" / \"sub-05_ses-JHU1_acq-GD72_dwi.bval\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "b2e3b427-ff19-4e5a-ace9-dd1f561f26c3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"gtab = gradient_table(str(bval_file), str(bvec_file))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "e8a744ef-9822-4df4-936f-15e4cfd2b871", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#from dmriprep.interfaces.vectors import CheckGradientTable\n", | ||
"\n", | ||
"#gen_rasb = CheckGradientTable(dwi_file=str(dwi_file),\n", | ||
"# in_bvec=str(bvec_file),\n", | ||
"# in_bval=str(bval_file)\n", | ||
"# ).run()\n", | ||
"\n", | ||
"rasb_file = bids_dir / \"sub-05\" / \"ses-JHU1\" / \"dwi\" / \"sub-05_ses-JHU1_acq-GD72_dwi.tsv\"\n", | ||
"#shutil.copy(\"sub-05_ses-JHU1_acq-GD72_dwi.tsv\", str(rasb_file))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "0184689a-0951-4bf4-a359-fe2338654809", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"b0_file = derivatives_dir / \"sub-05\" / \"ses-JHU1\" / \"dwi\" / \"sub-05_ses-JHU1_acq-GD72_desc-b0_dwi.nii.gz\"\n", | ||
"brainmask_file = derivatives_dir / \"sub-05\" / \"ses-JHU1\" / \"dwi\" / \"sub-05_ses-JHU1_acq-GD72_desc-brain_mask.nii.gz\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "5a848fc7-a0b4-4015-af55-a99ec1cbf7b0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = dmri.load(\n", | ||
" str(dwi_file),\n", | ||
" gradients_file=str(rasb_file),\n", | ||
" b0_file=str(b0_file),\n", | ||
" brainmask_file=str(brainmask_file)\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"id": "a417e10d-a1f9-41f4-83a0-0731448ead76", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def _rasb2dipy(gradient):\n", | ||
" gradient = np.asanyarray(gradient)\n", | ||
" if gradient.ndim == 1:\n", | ||
" if gradient.size != 4:\n", | ||
" raise ValueError(\"Missing gradient information.\")\n", | ||
" gradient = gradient[..., np.newaxis]\n", | ||
"\n", | ||
" if gradient.shape[0] != 4:\n", | ||
" gradient = gradient.T\n", | ||
" elif gradient.shape == (4, 4):\n", | ||
" print(\"Warning: make sure gradient information is not transposed!\")\n", | ||
"\n", | ||
" with warnings.catch_warnings():\n", | ||
" warnings.filterwarnings(\"ignore\", category=UserWarning)\n", | ||
" retval = gradient_table(gradient[3, :], gradient[:3, :].T)\n", | ||
" return retval" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "760f45fa-d38f-4121-b9a3-9be1a5aeb6d0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class DKIModel:\n", | ||
" \"\"\"A wrapper of :obj:`dipy.reconst.dki.DiffusionKurtosisModel.\"\"\"\n", | ||
"\n", | ||
" __slots__ = (\"_model\", \"_S0\", \"_mask\")\n", | ||
"\n", | ||
" def __init__(self, gtab, S0=None, mask=None, **kwargs):\n", | ||
" \"\"\"Instantiate the wrapped tensor model.\"\"\"\n", | ||
" from dipy.reconst.dki import DiffusionKurtosisModel\n", | ||
"\n", | ||
" self._S0 = None\n", | ||
" if S0 is not None:\n", | ||
" self._S0 = np.clip(\n", | ||
" S0.astype(\"float32\") / S0.max(),\n", | ||
" a_min=1e-5,\n", | ||
" a_max=1.0,\n", | ||
" )\n", | ||
" self._mask = mask\n", | ||
" if mask is None and S0 is not None:\n", | ||
" self._mask = self._S0 > np.percentile(self._S0, 35)\n", | ||
"\n", | ||
" if self._mask is not None:\n", | ||
" self._S0 = self._S0[self._mask.astype(bool)]\n", | ||
"\n", | ||
" kwargs = {\n", | ||
" k: v\n", | ||
" for k, v in kwargs.items()\n", | ||
" if k\n", | ||
" in (\n", | ||
" \"min_signal\",\n", | ||
" \"return_S0_hat\",\n", | ||
" \"fit_method\",\n", | ||
" \"weighting\",\n", | ||
" \"sigma\",\n", | ||
" \"jac\",\n", | ||
" )\n", | ||
" }\n", | ||
" self._model = DiffusionKurtosisModel(gtab, **kwargs)\n", | ||
"\n", | ||
" def fit(self, data, **kwargs):\n", | ||
" \"\"\"Clean-up permitted args and kwargs, and call model's fit.\"\"\"\n", | ||
" self._model = self._model.fit(data[self._mask, ...])\n", | ||
"\n", | ||
" def predict(self, gradient, **kwargs):\n", | ||
" \"\"\"Propagate model parameters and call predict.\"\"\"\n", | ||
" predicted = np.squeeze(\n", | ||
" self._model.predict(\n", | ||
" _rasb2dipy(gradient),\n", | ||
" S0=self._S0,\n", | ||
" )\n", | ||
" )\n", | ||
" if predicted.ndim == 3:\n", | ||
" return predicted\n", | ||
"\n", | ||
" retval = np.zeros_like(self._mask, dtype=\"float32\")\n", | ||
" retval[self._mask, ...] = predicted\n", | ||
" return retval" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"id": "63cce457-29ef-4439-9677-962ab3e019a2", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class DTIModel:\n", | ||
" \"\"\"A wrapper of :obj:`dipy.reconst.dti.TensorModel.\"\"\"\n", | ||
"\n", | ||
" __slots__ = (\"_model\", \"_S0\", \"_mask\")\n", | ||
"\n", | ||
" def __init__(self, gtab, S0=None, mask=None, **kwargs):\n", | ||
" \"\"\"Instantiate the wrapped tensor model.\"\"\"\n", | ||
" from dipy.reconst.dti import TensorModel as DipyTensorModel\n", | ||
"\n", | ||
" self._S0 = None\n", | ||
" if S0 is not None:\n", | ||
" self._S0 = np.clip(\n", | ||
" S0.astype(\"float32\") / S0.max(),\n", | ||
" a_min=1e-5,\n", | ||
" a_max=1.0,\n", | ||
" )\n", | ||
"\n", | ||
" self._mask = mask\n", | ||
" if mask is None and S0 is not None:\n", | ||
" self._mask = self._S0 > np.percentile(self._S0, 35)\n", | ||
"\n", | ||
" if self._mask is not None:\n", | ||
" self._S0 = self._S0[self._mask.astype(bool)]\n", | ||
"\n", | ||
" kwargs = {\n", | ||
" k: v\n", | ||
" for k, v in kwargs.items()\n", | ||
" if k\n", | ||
" in (\n", | ||
" \"min_signal\",\n", | ||
" \"return_S0_hat\",\n", | ||
" \"fit_method\",\n", | ||
" \"weighting\",\n", | ||
" \"sigma\",\n", | ||
" \"jac\",\n", | ||
" )\n", | ||
" }\n", | ||
" self._model = DipyTensorModel(_rasb2dipy(gtab), **kwargs)\n", | ||
"\n", | ||
" def fit(self, data, **kwargs):\n", | ||
" \"\"\"Fit the model chunk-by-chunk asynchronously.\"\"\"\n", | ||
" self._model = self._model.fit(data[self._mask, ...])\n", | ||
"\n", | ||
" def predict(self, gradient, **kwargs):\n", | ||
" \"\"\"Propagate model parameters and call predict.\"\"\"\n", | ||
" predicted = np.squeeze(\n", | ||
" self._model.predict(\n", | ||
" _rasb2dipy(gradient),\n", | ||
" S0=self._S0,\n", | ||
" )\n", | ||
" )\n", | ||
" if predicted.ndim == 3:\n", | ||
" return predicted\n", | ||
"\n", | ||
" retval = np.zeros_like(self._mask, dtype=\"float32\")\n", | ||
" retval[self._mask, ...] = predicted\n", | ||
" return retval" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "a0538db7-79ee-46f4-91fd-e8def6eedafe", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class SparseFascicleModel:\n", | ||
" \"\"\"\n", | ||
" A wrapper of :obj:`dipy.reconst.sfm.SparseFascicleModel.\n", | ||
" \"\"\"\n", | ||
"\n", | ||
" __slots__ = (\"_model\", \"_S0\", \"_mask\", \"_solver\")\n", | ||
"\n", | ||
" def __init__(self, gtab, S0=None, mask=None, solver=None, **kwargs):\n", | ||
" \"\"\"Instantiate the wrapped model.\"\"\"\n", | ||
" from dipy.reconst.sfm import SparseFascicleModel\n", | ||
" from sklearn.gaussian_process import GaussianProcessRegressor\n", | ||
"\n", | ||
" self._S0 = None\n", | ||
" if S0 is not None:\n", | ||
" self._S0 = np.clip(\n", | ||
" S0.astype(\"float32\") / S0.max(),\n", | ||
" a_min=1e-5,\n", | ||
" a_max=1.0,\n", | ||
" )\n", | ||
"\n", | ||
" self._mask = mask\n", | ||
" if mask is None and S0 is not None:\n", | ||
" self._mask = self._S0 > np.percentile(self._S0, 35)\n", | ||
"\n", | ||
" if self._mask is not None:\n", | ||
" self._S0 = self._S0[self._mask.astype(bool)]\n", | ||
"\n", | ||
" self._solver = solver\n", | ||
" if solver is None:\n", | ||
" self._solver = \"ElasticNet\"\n", | ||
"\n", | ||
" kwargs = {k: v for k, v in kwargs.items() if k in (\"solver\",)}\n", | ||
" self._model = SparseFascicleModel(gtab, **kwargs)\n", | ||
"\n", | ||
" def fit(self, data, **kwargs):\n", | ||
" \"\"\"Clean-up permitted args and kwargs, and call model's fit.\"\"\"\n", | ||
" self._model = self._model.fit(data[self._mask, ...])\n", | ||
"\n", | ||
" def predict(self, gradient, **kwargs):\n", | ||
" \"\"\"Propagate model parameters and call predict.\"\"\"\n", | ||
" predicted = np.squeeze(\n", | ||
" self._model.predict(\n", | ||
" _rasb2dipy(gradient),\n", | ||
" S0=self._S0,\n", | ||
" )\n", | ||
" )\n", | ||
" if predicted.ndim == 3:\n", | ||
" return predicted\n", | ||
"\n", | ||
" retval = np.zeros_like(self._mask, dtype=\"float32\")\n", | ||
" retval[self._mask, ...] = predicted\n", | ||
" return retval" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"id": "98e05ec4-00cf-42ad-b566-9b52d3afb0cd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model = DTIModel(\n", | ||
" gtab=data.gradients,\n", | ||
" S0=data.bzero,\n", | ||
" mask=data.brainmask\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "46fd2487-c8f5-4c05-833d-b5f790be0819", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data_train, data_test = data.logo_split(10)\n", | ||
"model.fit(data_train[0])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5aede348-5726-4ba5-8d28-9cfdbc9caf4e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"predicted = model.predict(data_test[1])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "75a77093-18f3-4388-a0a8-be3841c71d3e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plot_dwi(predicted, data.affine, gradient=data_test[1]);" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "74b5228c-8220-420b-8149-26f2b58a8850", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.