This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Add squared exponential covariance kernel
Add squared exponential covariance kernel.
- Loading branch information
1 parent
2b07b0e
commit 18dd5e3
Showing
2 changed files
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright 2024 The NiPreps Developers <[email protected]> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY kIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
import numpy as np | ||
from sklearn.gaussian_process.kernels import Kernel | ||
|
||
|
||
class SquaredExponentialCovarianceKernel(Kernel): | ||
r"""Kernel based on a squared exponential function for Gaussian processes on | ||
multi-shell DWI data following to eqs. 14 and 16 in [Andersson15]_. | ||
For a 2-shell case, the $$\mathbf{K}$$ kernel can be written as: | ||
.. math:: | ||
\begin{equation} | ||
\mathbf{K} = \left[ | ||
\begin{matrix} | ||
\lambda C_{\theta}(\theta (\mathbf{G}_{1}); a) + \sigma_{1}^{2} \mathbf{I} & \lambda C_{\theta}(\theta (\mathbf{G}_{2}, \mathbf{G}_{1}); a) C_{b}(b_{2}, b_{1}; \ell) \\ | ||
\lambda C_{\theta}(\theta (\mathbf{G}_{1}, \mathbf{G}_{2}); a) C_{b}(b_{1}, b_{2}; \ell) & \lambda C_{\theta}(\theta (\mathbf{G}_{2}); a) + \sigma_{2}^{2} \mathbf{I} \\ | ||
\end{matrix} | ||
\right] | ||
\end{equation} | ||
Parameters | ||
---------- | ||
lambda_ : float | ||
Scale parameter for the covariance function. | ||
a : float | ||
Distance parameter where the covariance function goes to zero. | ||
sigma_sq : float | ||
Noise variance term. | ||
References | ||
---------- | ||
.. [Andersson15] J. L. R. Andersson. et al., Non-parametric representation | ||
and prediction of single- and multi-shell diffusion-weighted MRI data using | ||
Gaussian processes, NeuroImage 122 (2015) 166–176 | ||
""" | ||
|
||
def __init__(self, lambda_=1.0, a=1.0, sigma_sq=1.0): | ||
self.lambda_ = lambda_ | ||
self.a = a | ||
self.sigma_sq = sigma_sq | ||
|
||
def __call__(self, gradients): | ||
"""Compute the kernel matrix. | ||
Parameters | ||
---------- | ||
gradients : RAS+b | ||
. | ||
Returns | ||
------- | ||
K : :obj:`~numpy.ndarray`, shape (n_samples, n_samples) | ||
Kernel matrix. | ||
""" | ||
|
||
# ToDo | ||
# Call compute_squared_exponential_covariance_kernel | ||
pass | ||
|
||
def diag(self, X): | ||
"""Return the diagonal of the kernel matrix. | ||
Parameters | ||
---------- | ||
X : :obj:`~numpy.ndarray`, shape (n_samples, n_features) | ||
Input data. | ||
Returns | ||
------- | ||
:obj:`~numpy.ndarray`, shape (n_samples,) | ||
Diagonal of the kernel matrix. | ||
""" | ||
|
||
return np.full(X.shape[0], self.lambda_ + self.sigma_sq) | ||
|
||
def is_stationary(self): | ||
"""Return whether the kernel is stationary. | ||
Returns | ||
------- | ||
:obj:`bool` | ||
Returns always ``True``. | ||
""" | ||
|
||
return True | ||
|
||
def get_params(self, deep=True): | ||
"""Get parameters of the kernel. | ||
Parameters | ||
---------- | ||
deep : :obj:`bool` | ||
Whether to return the parameters of the contained subobjects. | ||
Returns | ||
------- | ||
params : :obj:`dict` | ||
Parameter names mapped to their values. | ||
""" | ||
|
||
return {"lambda_": self.lambda_, "a": self.a, "sigma_sq": self.sigma_sq} | ||
|
||
def set_params(self, **params): | ||
"""Set parameters of the kernel. | ||
Parameters | ||
---------- | ||
params : :obj:`dict` | ||
Kernel parameters. | ||
Returns | ||
------- | ||
self | ||
""" | ||
|
||
self.lambda_ = params.get("lambda_", self.lambda_) | ||
self.a = params.get("a", self.a) | ||
self.sigma_sq = params.get("sigma_sq", self.sigma_sq) | ||
return self | ||
|
||
|
||
def compute_squared_exponential_shell_covariance(grpi, grpb, l): | ||
r"""Compute the squared exponential smooth function describing how the | ||
covariance changes along the b direction. | ||
It uses the log of the b-values as the measure of distance along the | ||
b-direction according to eq. 15 in [Andersson15]_. | ||
.. math:: | ||
C_{b}(b, b'; \ell) = \exp\left( - \frac{(\log b - \log b')^2}{2 \ell^2} \right) | ||
Parameters | ||
---------- | ||
grpi : :obj:`~numpy.ndarray` | ||
Group of indices. | ||
grpb : :obj:`~numpy.ndarray` | ||
Groups of b-values. | ||
l : float | ||
Returns | ||
------- | ||
The squared exponential function. | ||
References | ||
---------- | ||
.. [Andersson15] J. L. R. Andersson. et al., Non-parametric representation | ||
and prediction of single- and multi-shell diffusion-weighted MRI data using | ||
Gaussian processes, NeuroImage 122 (2015) 166–176 | ||
""" | ||
|
||
# Compute log probability of b-values | ||
log_grpb = np.log(grpb) | ||
bv_diff = log_grpb[grpi[:, None]] - log_grpb[grpi] | ||
return np.exp(-(bv_diff ** 2) / (2 * l ** 2)) | ||
|
||
|
||
def compute_squared_exponential_covariance_kernel(K, angle_mat, thpar, grpb, grpi): | ||
r"""Compute the squared exponential covariance matrix following to eq. 14 in | ||
[Andersson15]_. | ||
.. math:: | ||
k(\textbf{x}, \textbf{x'}) = C_{\theta}(\mathbf{g}, \mathbf{g'}; a) C_{b}(\abs{b - b'}; \ell) | ||
where :math:`C_{\theta}` is given by: | ||
.. math:: | ||
\begin{equation} | ||
C(\theta) = | ||
\begin{cases} 1 - \frac{3 \theta}{2 a} + \frac{\theta^3}{2 a^3} & \textnormal{if} \; \theta \leq a \\ | ||
0 & \textnormal{if} \; \theta > a | ||
\end{cases} | ||
\end{equation} | ||
:math:`\theta` being computed as: | ||
.. math:: | ||
\theta(\mathbf{g}, \mathbf{g'}) = \arccos(\abs{\langle \mathbf{g}, \mathbf{g'} \rangle}) | ||
and :math:`C_{b}` is given by: | ||
.. math:: | ||
C_{b}(b, b'; \ell) = \exp\left( - \frac{(\log b - \log b')^2}{2 \ell^2} \right) | ||
being :math:`b` and :math:`b'` the b-values, and :math:`\mathbf{g}` and | ||
:math:`\mathbf{g'}` the unit diffusion-encoding gradient unit vectors of the | ||
shells; and :math:`{a, \ell}` some hyperparameters. | ||
Parameters | ||
---------- | ||
Returns | ||
------- | ||
References | ||
---------- | ||
.. [Andersson15] J. L. R. Andersson. et al., Non-parametric representation | ||
and prediction of single- and multi-shell diffusion-weighted MRI data using | ||
Gaussian processes, NeuroImage 122 (2015) 166–176 | ||
""" | ||
|
||
sm = thpar[0] | ||
a = thpar[1] | ||
l = thpar[2] | ||
|
||
# Compute angular covariance | ||
# ToDo | ||
# Vectorize this/take it from the single shell PR | ||
for j in range(K.shape[1]): | ||
for i in range(j, K.shape[0]): | ||
theta = angle_mat[i+1, j+1] | ||
if a > theta: | ||
K[i+1, j+1] = sm * (1.0 - 1.5 * theta / a + 0.5 * (theta ** 3) / (a ** 3)) | ||
else: | ||
K[i+1, j+1] = 0.0 | ||
|
||
# Compute b-value covariance | ||
# ToDo | ||
# Vectorize this/call compute_squared_exponential_shell_covariance | ||
if ngrp > 1: | ||
log_grpb = np.log(grpb()) | ||
for j in range(K.shape[1]): | ||
for i in range(j + 1, K.shape[0]): | ||
bvdiff = log_grpb[grpi[i]] - log_grpb[grpi[j]] | ||
if bvdiff: | ||
K[i+1, j+1] *= np.exp(-(bvdiff ** 2) / (2 * l ** 2)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright 2024 The NiPreps Developers <[email protected]> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY kIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
from src.eddymotion.model.kernels import ( | ||
SquaredExponentialCovarianceKernel, | ||
compute_squared_exponential_shell_covariance, | ||
compute_squared_exponential_covariance_kernel, | ||
) | ||
|
||
|
||
def test_SquaredExponentialCovarianceKernel(): | ||
kernel = SquaredExponentialCovarianceKernel() | ||
|
||
|
||
def test_compute_squared_exponential_shell_covariance(): | ||
sq_exp_shell_cov = compute_squared_exponential_shell_covariance() | ||
|
||
|
||
def test_compute_squared_exponential_covariance_kernel(): | ||
sq_exp_shell_cov_kern = compute_squared_exponential_covariance_kernel() |