-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ENH] Add affine registration tools for EMC
- Loading branch information
Showing
1 changed file
with
170 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
""" | ||
Linear affine registration tools for motion correction. | ||
""" | ||
import numpy as np | ||
import nibabel as nb | ||
from dipy.align.metrics import CCMetric, EMMetric, SSDMetric | ||
from dipy.align.imaffine import ( | ||
transform_centers_of_mass, | ||
AffineMap, | ||
MutualInformationMetric, | ||
AffineRegistration, | ||
) | ||
from dipy.align.transforms import ( | ||
TranslationTransform3D, | ||
RigidTransform3D, | ||
AffineTransform3D, | ||
) | ||
from nipype.utils.filemanip import fname_presuffix | ||
|
||
syn_metric_dict = {"CC": CCMetric, "EM": EMMetric, "SSD": SSDMetric} | ||
|
||
__all__ = [ | ||
"c_of_mass", | ||
"translation", | ||
"rigid", | ||
"affine", | ||
"affine_registration", | ||
] | ||
|
||
|
||
def apply_affine(moving, static, transform_affine, invert=False): | ||
"""Apply an affine to transform an image from one space to another. | ||
Parameters | ||
---------- | ||
moving : array | ||
The image to be resampled | ||
static : array | ||
Returns | ||
------- | ||
warped_img : the moving array warped into the static array's space. | ||
""" | ||
affine_map = AffineMap( | ||
transform_affine, static.shape, static.affine, moving.shape, moving.affine | ||
) | ||
if invert is True: | ||
warped_arr = affine_map.transform_inverse(np.asarray(moving.dataobj)) | ||
else: | ||
warped_arr = affine_map.transform(np.asarray(moving.dataobj)) | ||
|
||
return nb.Nifti1Image(warped_arr, static.affine) | ||
|
||
|
||
def average_affines(transforms): | ||
affine_list = [np.load(aff) for aff in transforms] | ||
average_affine_file = fname_presuffix( | ||
transforms[0], use_ext=False, suffix="_average.npy" | ||
) | ||
np.save(average_affine_file, np.mean(affine_list, axis=0)) | ||
return average_affine_file | ||
|
||
|
||
# Affine registration pipeline: | ||
affine_metric_dict = {"MI": MutualInformationMetric, "CC": CCMetric} | ||
|
||
|
||
def c_of_mass( | ||
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None | ||
): | ||
transform = transform_centers_of_mass(static, static_affine, moving, moving_affine) | ||
transformed = transform.transform(moving) | ||
return transformed, transform.affine | ||
|
||
|
||
def translation( | ||
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None | ||
): | ||
transform = TranslationTransform3D() | ||
translation = reg.optimize( | ||
static, | ||
moving, | ||
transform, | ||
params0, | ||
static_affine, | ||
moving_affine, | ||
starting_affine=starting_affine, | ||
) | ||
|
||
return translation.transform(moving), translation.affine | ||
|
||
|
||
def rigid( | ||
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None | ||
): | ||
transform = RigidTransform3D() | ||
rigid = reg.optimize( | ||
static, | ||
moving, | ||
transform, | ||
params0, | ||
static_affine, | ||
moving_affine, | ||
starting_affine=starting_affine, | ||
) | ||
return rigid.transform(moving), rigid.affine | ||
|
||
|
||
def affine( | ||
moving, static, static_affine, moving_affine, reg, starting_affine, params0=None | ||
): | ||
transform = AffineTransform3D() | ||
affine = reg.optimize( | ||
static, | ||
moving, | ||
transform, | ||
params0, | ||
static_affine, | ||
moving_affine, | ||
starting_affine=starting_affine, | ||
) | ||
|
||
return affine.transform(moving), affine.affine | ||
|
||
|
||
def affine_registration( | ||
moving, | ||
static, | ||
nbins, | ||
sampling_prop, | ||
metric, | ||
pipeline, | ||
level_iters, | ||
sigmas, | ||
factors, | ||
params0, | ||
): | ||
|
||
""" | ||
Find the affine transformation between two 3D images. | ||
Parameters | ||
---------- | ||
""" | ||
# Define the Affine registration object we'll use with the chosen metric: | ||
use_metric = affine_metric_dict[metric](nbins, sampling_prop) | ||
affreg = AffineRegistration( | ||
metric=use_metric, level_iters=level_iters, sigmas=sigmas, factors=factors | ||
) | ||
|
||
if not params0: | ||
starting_affine = np.eye(4) | ||
else: | ||
starting_affine = params0 | ||
|
||
# Go through the selected transformation: | ||
for func in pipeline: | ||
transformed, starting_affine = func( | ||
np.asarray(moving.dataobj), | ||
np.asarray(static.dataobj), | ||
static.affine, | ||
moving.affine, | ||
affreg, | ||
starting_affine, | ||
params0, | ||
) | ||
return nb.Nifti1Image(np.array(transformed), static.affine), starting_affine |