-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cf218b7
commit 23deaf5
Showing
3 changed files
with
375 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import os | ||
|
||
import pandas as pd | ||
import panel as pn | ||
from main_dashboard import MainDashboard | ||
from odmantic import SyncEngine | ||
from pymongo import MongoClient | ||
from ui import get_template | ||
|
||
from osm import schemas | ||
|
||
|
||
def flatten_dict(d): | ||
""" | ||
Recursively flattens a nested dictionary without prepending parent keys. | ||
:param d: Dictionary to flatten. | ||
:return: Flattened dictionary. | ||
""" | ||
items = [] | ||
for k, v in d.items(): | ||
if isinstance(v, dict): | ||
# If the value is a dictionary, flatten it without the parent key | ||
items.extend(flatten_dict(v).items()) | ||
else: | ||
items.append((k, v)) | ||
return dict(items) | ||
|
||
|
||
def load_data(): | ||
if "LOCAL_DATA_PATH" in os.environ: | ||
return pd.read_feather(os.environ["LOCAL_DATA_PATH"]) | ||
client = MongoClient(os.environ["MONGODB_URI"]) | ||
engine = SyncEngine(client=client, database="osm") | ||
matches = ( | ||
engine.get_collection(schemas.Invocation) | ||
.aggregate( | ||
[ | ||
{ | ||
"$match": { | ||
"osm_version": {"$eq": "0.0.1"}, | ||
# "work.pmid": {"$regex":r"^2"}, | ||
"metrics.year": {"$gt": 2000}, | ||
# "metrics.is_data_pred": {"$eq": True}, | ||
}, | ||
}, | ||
{ | ||
"$project": { | ||
# "osm_version": True, | ||
# "user_comment": True, | ||
# "client.compute_context_id": True, | ||
"work.user_defined_id": True, | ||
"metrics.year": True, | ||
"metrics.is_code_pred": True, | ||
"metrics.is_data_pred": True, | ||
"metrics.affiliation_country": True, | ||
"metrics.score": True, | ||
"metrics.eigenfactor_score": True, | ||
"metrics.fund_pmc_anysource": True, | ||
"metrics.fund_pmc_institute": True, | ||
"metrics.fund_pmc_source": True, | ||
"metrics.journal": True, | ||
}, | ||
}, | ||
] | ||
) | ||
.__iter__() | ||
) | ||
return pd.DataFrame(flatten_dict(match) for match in matches) | ||
|
||
|
||
def dashboard_page(): | ||
template = get_template() | ||
|
||
dashboard = MainDashboard(pn.state.cache["data"]) | ||
|
||
template.main.append(dashboard.get_dashboard) | ||
template.sidebar.append(dashboard.get_sidebar) | ||
|
||
return template | ||
|
||
|
||
def on_load(): | ||
""" | ||
Add resource intensive things that you only want to run once. | ||
""" | ||
pn.config.browser_info = True | ||
pn.config.notifications = True | ||
raw_data = load_data() | ||
raw_data = raw_data[raw_data != 999999] | ||
|
||
# Harcoded for now, will be added to the raw data later | ||
raw_data["metrics"] = "RTransparent" | ||
|
||
pn.state.cache["data"] = raw_data | ||
|
||
|
||
if __name__ == "__main__": | ||
# Runs all the things necessary before the server actually starts. | ||
pn.state.onload(on_load) | ||
print("starting dashboard!") | ||
pn.serve( | ||
{"/": dashboard_page}, | ||
address="0.0.0.0", | ||
port=8501, | ||
start=True, | ||
location=True, | ||
show=False, | ||
keep_alive=30 * 1000, # 30s | ||
autoreload=True, | ||
admin=True, | ||
profiler="pyinstrument", | ||
allow_websocket_origin=[ | ||
"localhost:8501", | ||
"osm.pythonaisolutions.com", | ||
], | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
import holoviews as hv | ||
import pandas as pd | ||
import panel as pn | ||
import param | ||
|
||
pn.extension() | ||
|
||
|
||
pd.options.display.max_columns = None | ||
|
||
# filters = { | ||
# "journal" : "category", | ||
# "metrics" : "select", | ||
# } | ||
|
||
|
||
groups = {"year": "int"} | ||
|
||
|
||
dims_aggregations = { | ||
"is_data_pred": ["percent", "count_true", "count"], | ||
"is_code_pred": ["percent", "count_true"], | ||
"score": ["mean"], | ||
"eigenfactor_score": ["mean"], | ||
} | ||
|
||
|
||
aggregation_formulas = { | ||
"percent": lambda x: x.mean() * 100, | ||
"count_true": lambda x: (x == True).sum(), # noqa | ||
"count": "count", | ||
"mean": "mean", | ||
} | ||
|
||
|
||
class MainDashboard(param.Parameterized): | ||
""" | ||
Main dashboard for the application. | ||
""" | ||
|
||
select_metrics = param.Selector( | ||
default="RTransparent", objects=["RTransparent"], label="" | ||
) | ||
|
||
grouping_var = param.Selector( | ||
default="year", objects=["year", "fund_pmc_institute"], label="" | ||
) | ||
|
||
filter_journal = param.Selector( | ||
default="All journals (including empty)", | ||
objects=[ | ||
"All journals (including empty)", | ||
"All journals (excluding empty values)", | ||
"Only selected journals", | ||
], | ||
label="Journal", | ||
) | ||
filter_selected_journals = param.ListSelector(default=[], objects=[], label="") | ||
|
||
def __init__(self, raw_data, **params): | ||
super().__init__(**params) | ||
|
||
self.raw_data = raw_data | ||
|
||
self.param.filter_selected_journals.objects = self.raw_data.journal.unique() | ||
# As default, takes the journals with the biggest number of occurences | ||
self.filter_selected_journals = list( | ||
self.raw_data.journal.value_counts().iloc[:10].index | ||
) | ||
|
||
def filtered_grouped_data(self): | ||
filters = [] | ||
|
||
if self.filter_journal == "All journals (excluding empty values)": | ||
filters.append(("journal.notnull()")) | ||
elif self.filter_journal == "Only selected journals": | ||
filters.append(f"journal in {self.filter_selected_journals}") | ||
|
||
filtered_df = self.raw_data.query(*filters) if filters else self.raw_data | ||
|
||
aggretations = {} | ||
for field, aggs in dims_aggregations.items(): | ||
for agg in aggs: | ||
aggretations[f"{agg}_{field}"] = (field, aggregation_formulas[agg]) | ||
|
||
result = ( | ||
filtered_df.groupby(self.grouping_var).agg(**aggretations).reset_index() | ||
) | ||
|
||
return result | ||
|
||
@pn.depends("select_metrics", "filter_journal") | ||
def get_sidebar(self): | ||
items = [ | ||
pn.pane.Markdown("## Filters"), | ||
pn.pane.Markdown("### Metrics extraction tool"), | ||
pn.widgets.Select.from_param(self.param.select_metrics), | ||
pn.layout.Divider(), | ||
pn.pane.Markdown("### Grouping"), | ||
pn.widgets.Select.from_param(self.param.grouping_var), | ||
pn.layout.Divider(), | ||
pn.pane.Markdown("### Filters"), | ||
pn.widgets.Select.from_param(self.param.filter_journal), | ||
] | ||
|
||
if self.filter_journal == "Only selected journals": | ||
items.append( | ||
pn.widgets.MultiChoice.from_param( | ||
self.param.filter_selected_journals, max_items=10 | ||
) | ||
) | ||
|
||
sidebar = pn.Column(*items) | ||
|
||
return sidebar | ||
|
||
@pn.depends( | ||
"select_metrics", "filter_journal", "filter_selected_journals", "grouping_var" | ||
) | ||
def get_dashboard(self): | ||
df = self.filtered_grouped_data() | ||
|
||
# Create charts | ||
fig_data_curve = hv.Curve( | ||
df, | ||
kdims=[self.grouping_var], | ||
vdims=[ | ||
"percent_is_data_pred", | ||
], | ||
).opts(color="red") | ||
|
||
fig_code_curve = hv.Curve( | ||
df, | ||
kdims=[self.grouping_var], | ||
vdims=[ | ||
"percent_is_code_pred", | ||
], | ||
).opts(color="lightblue") | ||
|
||
fig_data_points = hv.Points( | ||
df, | ||
kdims=[self.grouping_var, "percent_is_data_pred"], | ||
).opts( | ||
tools=["hover"], | ||
color="red", | ||
size=5, | ||
hover_tooltips=[ | ||
(self.grouping_var, f"@{self.grouping_var}"), | ||
("% is_data_prep", "@percent_is_data_pred"), | ||
("Total is_data_prep", "@count_true_is_data_pred"), | ||
("nbr_publications", "@count_is_data_pred"), | ||
], | ||
) | ||
|
||
fig_code_points = hv.Points( | ||
df, | ||
kdims=[self.grouping_var, "percent_is_code_pred"], | ||
).opts( | ||
tools=["hover"], | ||
color="lightblue", | ||
size=5, | ||
hover_tooltips=[ | ||
(self.grouping_var, f"@{self.grouping_var}"), | ||
("% is_code_prep", "@percent_is_code_pred"), | ||
("Total is_code_prep", "@count_true_is_code_pred"), | ||
("nbr_publications", "@count_is_data_pred"), | ||
], | ||
) | ||
|
||
plot = ( | ||
fig_code_curve * fig_data_curve * fig_data_points * fig_code_points | ||
).opts( | ||
title="", | ||
xlabel=self.grouping_var, | ||
ylabel="Percentage", | ||
width=800, | ||
height=400, | ||
legend_position="top_left", | ||
) | ||
|
||
# Layout the dashboard | ||
dashboard = pn.Column( | ||
"# Data and code transparency", | ||
pn.Column(plot, sizing_mode="stretch_width"), | ||
) | ||
|
||
return dashboard |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
import panel as pn | ||
|
||
|
||
def connection_monitor(): | ||
connection_monitor = pn.pane.HTML( | ||
""" | ||
<script> | ||
const originalSend = WebSocket.prototype.send; | ||
window.sockets = []; | ||
WebSocket.prototype.send = function(...args) { | ||
if (window.sockets.indexOf(this) === -1) | ||
window.sockets.push(this); | ||
return originalSend.call(this, ...args); | ||
}; | ||
console.log(window.sockets); | ||
const polling = setInterval(function() { | ||
if ( window.sockets.length > 0 ){ | ||
if ( window.sockets[0].readyState >= 2 ){ | ||
let div = document.createElement('div'); | ||
div.style.color = 'white'; | ||
div.style.backgroundColor= 'crimson'; | ||
div.style.padding = '10px 10px 10px 10px'; | ||
div.style.textAlign= 'center'; | ||
let text = document.createTextNode('Bokeh session has expired. Please reload.'); | ||
div.appendChild(text); | ||
window.document.body.insertBefore( | ||
div, | ||
window.document.body.firstChild | ||
); | ||
clearInterval(polling); | ||
} | ||
} | ||
}, 5000); | ||
</script> | ||
""" | ||
) | ||
|
||
return connection_monitor | ||
|
||
|
||
def get_template(): | ||
""" | ||
Returns a Panel template with the given title, | ||
with its menu and other header items. | ||
""" | ||
|
||
template = pn.template.FastListTemplate( | ||
site="NIH", | ||
title="OpenSciMetrics", | ||
favicon="https://www.nih.gov/favicon.ico", | ||
sidebar=[], | ||
) | ||
|
||
template.header.append( | ||
connection_monitor(), | ||
) | ||
|
||
return template |