Skip to content
/ opem Public
forked from ECSIM/opem

OPEM (Open Source PEM Fuel Cell Simulation Tool)

License

Notifications You must be signed in to change notification settings

ngomezve/opem

 
 

Repository files navigation


Table of Contents

Overview

Modeling and simulation of proton-exchange membrane fuel cells (PEMFC) may work as a powerful tool in the research & development of renewable energy sources. The Open-Source PEMFC Simulation Tool (OPEM) is a modeling tool for evaluating the performance of proton exchange membrane fuel cells. This package is a combination of models (static/dynamic) that predict the optimum operating parameters of PEMFC. OPEM contained generic models that will accept as input, not only values of the operating variables such as anode and cathode feed gas, pressure and compositions, cell temperature and current density, but also cell parameters including the active area and membrane thickness. In addition, some of the different models of PEMFC that have been proposed in the OPEM, just focus on one particular FC stack, and some others take into account a part or all auxiliaries such as reformers. OPEM is a platform for collaborative development of PEMFC models.

Fig1. OPEM Block Diagram

Open Hub
PyPI Counter
Github Stars
Branch master develop
CI
Code Quality CodeFactor

Usage

Executable

  • Open CMD (Windows) or Terminal (UNIX)

  • Run opem or python -m opem (or run OPEM.exe)

  • Enter PEM cell parameters (or run standard test vectors)

    1. Amphlett Static Model

      Input Description Unit
      T Cell operation temperature K
      PH2 Partial pressure atm
      PO2 Partial pressure atm
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      A Active area cm^2
      l Membrane thickness cm
      lambda An adjustable parameter with a min value of 14 and max value of 23 --
      R(*Optional) R-Electronic ohm
      JMax Maximum current density A/(cm^2)
      N Number of single cells --
      * For more information about this model visit here
    2. Larminie-Dicks Static Model

      Input Description Unit
      E0 Fuel cell reversible no loss voltage V
      A The slope of the Tafel line V
      T Cell operation temperature K
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      i_n Internal current A
      i_0 Exchange current at which the overvoltage begins to move from zero A
      i_L Limiting current A
      RM The membrane and contact resistances ohm
      N Number of single cells --
      * For more information about this model visit here
    3. Chamberline-Kim Static Model

      Input Description Unit
      E0 Open circuit voltage V
      b Tafel's parameter for the oxygen reduction V
      R Resistance ohm.cm^2
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      A Active area cm^2
      m Diffusion's parameters V
      n Diffusion's parameters (A^-1)(cm^2)
      N Number of single cells --
      * For more information about this model visit here
    4. Padulles Dynamic Model I

      Input Description Unit
      E0 No load voltage V
      T Fuel cell temperature K
      KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1)
      KO2 Oxygen valve constant kmol.s^(-1).atm^(-1)
      tH2 Hydrogen time constant s
      tO2 Oxygen time constant s
      B Activation voltage constant V
      C Activation constant parameter A^(-1)
      Rint Fuel cell internal resistance ohm
      rho Hydrogen-Oxygen flow ratio --
      qH2 Molar flow of hydrogen kmol/s
      N0 Number of cells --
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      * For more information about this model visit here
    5. Padulles Dynamic Model II

      Input Description Unit
      E0 No load voltage V
      T Fuel cell temperature K
      KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1)
      KH2O Water valve constant kmol.s^(-1).atm^(-1)
      KO2 Oxygen valve constant kmol.s^(-1).atm^(-1)
      tH2 Hydrogen time constant s
      tH2O Water time constant s
      tO2 Oxygen time constant s
      B Activation voltage constant V
      C Activation constant parameter A^(-1)
      Rint Fuel cell internal resistance ohm
      rho Hydrogen-Oxygen flow ratio --
      qH2 Molar flow of hydrogen kmol/s
      N0 Number of cells --
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      * For more information about this model visit here
    6. Padulles-Hauer Dynamic Model

      Input Description Unit
      E0 No load voltage V
      T Fuel cell temperature K
      KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1)
      KH2O Water valve constant kmol.s^(-1).atm^(-1)
      KO2 Oxygen valve constant kmol.s^(-1).atm^(-1)
      tH2 Hydrogen time constant s
      tH2O Water time constant s
      tO2 Oxygen time constant s
      t1 Reformer time constant s
      t2 Reformer time constant s
      B Activation voltage constant V
      C Activation constant parameter A^(-1)
      CV Conversion factor --
      Rint Fuel cell internal resistance ohm
      rho Hydrogen-Oxygen flow ratio --
      qMethanol Molar flow of methanol kmol/s
      N0 Number of cells --
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      * For more information about this model visit here
    7. Padulles-Amphlett Dynamic Model

      Input Description Unit
      E0 No load voltage V
      T Fuel cell temperature K
      KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1)
      KH2O Water valve constant kmol.s^(-1).atm^(-1)
      KO2 Oxygen valve constant kmol.s^(-1).atm^(-1)
      tH2 Hydrogen time constant s
      tH2O Water time constant s
      tO2 Oxygen time constant s
      t1 Reformer time constant s
      t2 Reformer time constant s
      A Active area cm^2
      l Membrane thickness cm
      lambda An adjustable parameter with a min value of 14 and max value of 23 --
      R(*Optional) R-Electronic ohm
      JMax Maximum current density A/(cm^2)
      CV Conversion factor --
      rho Hydrogen-Oxygen flow ratio --
      qMethanol Molar flow of methanol kmol/s
      N0 Number of cells --
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      * For more information about this model visit here
    8. Chakraborty Dynamic Model

      Input Description Unit
      E0 No load voltage V
      T Cell operation temperature K
      KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1)
      KH2O Water valve constant kmol.s^(-1).atm^(-1)
      KO2 Oxygen valve constant kmol.s^(-1).atm^(-1)
      rho Hydrogen-Oxygen flow ratio --
      Rint Fuel cell internal resistance ohm
      N0 Number of cells --
      u Fuel utilization ratio --
      i-start Cell operating current start point A
      i-step Cell operating current step A
      i-stop Cell operating current end point A
      * For more information about this model visit here
    • Find your reports in Model_Name folder

    Screen Record

    Screen Record

Library

  1. Amphlett Static Model

    >>> from opem.Static.Amphlett import Static_Analysis
    >>> Test_Vector={"T": 343.15,"PH2": 1,"PO2": 1,"i-start": 0,"i-stop": 75,"i-step": 0.1,"A": 50.6,"l": 0.0178,"lambda": 23,"N": 1,"R": 0,"JMax": 1.5,"Name": "Amphlett_Test"}
    >>> data=Static_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    Eta_Active Eta activation List
    Eta_Conc Eta concentration List
    Eta_Ohmic Eta ohmic List
    VE Estimated FC voltage List
    • For more information about this model visit here
  2. Larminie-Dicks Static Model

    >>> from opem.Static.Larminie_Dicks import Static_Analysis
    >>> Test_Vector = {"A": 0.06,"E0": 1.178,"T": 328.15,"RM": 0.0018,"i_0": 0.00654,"i_L": 100.0,"i_n": 0.23,"N": 23,"i-start": 0.1,"i-stop": 98,"i-step": 0.1,"Name": "Larminiee_Test"}
    >>> data=Static_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    VE Estimated FC voltage List
    • For more information about this model visit here
  3. Chamberline-Kim Static Model

    >>> from opem.Static.Chamberline_Kim import Static_Analysis
    >>> Test_Vector = {"A": 50.0,"E0": 0.982,"b": 0.0689,"R": 0.328,"m": 0.000125,"n": 9.45,"N": 1,"i-start": 1,"i-stop": 42.5,"i-step": 0.1,"Name": "Chamberline_Test"}
    >>> data=Static_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    VE Estimated FC voltage List
    • For more information about this model visit here
  4. Padulles Dynamic Model I

    >>> from opem.Dynamic.Padulles1 import Dynamic_Analysis
    >>> Test_Vector = {"T": 343,"E0": 0.6,"N0": 88,"KO2": 0.0000211,"KH2": 0.0000422,"tH2": 3.37,"tO2": 6.74,"B": 0.04777,"C": 0.0136,"Rint": 0.00303,"rho": 1.168,"qH2": 0.0004,"i-start": 0,"i-stop": 100,"i-step": 0.1,"Name": "PadullesI_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    PO2 Partial pressure List
    PH2 Partial pressure List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    VE Estimated FC voltage List
    • For more information about this model visit here
  5. Padulles Dynamic Model II

    >>> from opem.Dynamic.Padulles2 import Dynamic_Analysis
    >>> Test_Vector = {"T": 343,"E0": 0.6,"N0": 5,"KO2": 0.0000211,"KH2": 0.0000422,"KH2O": 0.000007716,"tH2": 3.37,"tO2": 6.74,"tH2O": 18.418,"B": 0.04777,"C": 0.0136,"Rint": 0.00303,"rho": 1.168,"qH2": 0.0004,"i-start": 0.1,"i-stop": 100,"i-step": 0.1,"Name": "Padulles2_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    PO2 Partial pressure List
    PH2 Partial pressure List
    PH2O Partial pressure List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    VE Estimated FC voltage List
    • For more information about this model visit here
  6. Padulles-Hauer Dynamic Model

    >>> from opem.Dynamic.Padulles_Hauer import Dynamic_Analysis
    >>> Test_Vector = {"T": 343,"E0": 0.6,"N0": 5,"KO2": 0.0000211,"KH2": 0.0000422,"KH2O": 0.000007716,"tH2": 3.37,"tO2": 6.74,"t1": 2,"t2": 2,"tH2O": 18.418,"B": 0.04777,"C": 0.0136,"Rint": 0.00303,"rho": 1.168,"qMethanol": 0.0002,"CV": 2,"i-start": 0.1,"i-stop": 100,"i-step": 0.1,"Name": "Padulles_Hauer_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    PO2 Partial pressure List
    PH2 Partial pressure List
    PH2O Partial pressure List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    VE Estimated FC voltage List
    • For more information about this model visit here
  7. Padulles-Amphlett Dynamic Model

    >>> from opem.Dynamic.Padulles_Amphlett import Dynamic_Analysis
    >>> Test_Vector = {"A": 50.6,"l": 0.0178,"lambda": 23,"JMax": 1.5,"T": 343,"N0": 5,"KO2": 0.0000211,"KH2": 0.0000422,"KH2O": 0.000007716,"tH2": 3.37,"tO2": 6.74,"t1": 2,"t2": 2,"tH2O": 18.418,"rho": 1.168,"qMethanol": 0.0002,"CV": 2,"i-start": 0.1,"i-stop": 75,"i-step": 0.1,"Name": "Padulles_Amphlett_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    PO2 Partial pressure List
    PH2 Partial pressure List
    PH2O Partial pressure List
    Ph Thermal power List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    Eta_Active Eta activation List
    Eta_Conc Eta concentration List
    Eta_Ohmic Eta ohmic List
    VE Estimated FC voltage List
    • For more information about this model visit here
  8. Chakraborty Dynamic Model

    >>> from opem.Dynamic.Chakraborty import Dynamic_Analysis
    >>> Test_Vector = {"T": 1273,"E0": 0.6,"u":0.8,"N0": 1,"R": 3.28125 * 10**(-3),"KH2O": 0.000281,"KH2": 0.000843,"KO2": 0.00252,"rho": 1.145,"i-start": 0.1,"i-stop": 300,"i-step": 0.1,"Name": "Chakraborty_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type
    Status Simulation status Bool
    P Power List
    I Cell operating current List
    V FC voltage List
    EFF Efficiency List
    PO2 Partial pressure List
    PH2 Partial pressure List
    PH2O Partial pressure List
    Ph Thermal power List
    Nernst Gain Nernst Gain List
    Ohmic Loss Ohmic Loss List
    V0 Linear-Apx intercept Float
    K Linear-Apx slope Float
    VE Estimated FC voltage List
    • For more information about this model visit here

    Parameters

    1. TestMode : Active test mode and get/return data as dict, (Default : False)
    2. ReportMode : Generate reports(.csv,.opem,.html) and print result in console, (Default : True)
    3. PrintMode : Control printing in console, (Default : True)
    4. Folder : Reports folder, (Default : os.getcwd())

    Note

    • Return type : dict

Telegram Bot

  • Send /start command to OPEM BOT
  • Choose models from menu
  • Send your test vector according to the template
  • Download your results

Try OPEM in Your Browser!

OPEM can be used online in interactive Jupyter Notebooks via the Binder service! Try it out now! :

Binder

  • Check .ipynb files in Documents folder
  • Edit and execute each part of the notes, step by step from the top panel by run button
  • For executing a complete simulation, you can edit Test_Vector in Full Run section

Issues & Bug Reports

Just fill an issue and describe it. We'll check it ASAP! or send an email to [email protected].

You can also join our discord server

Discord Channel

Outputs

  1. HTML
  2. CSV
  3. OPEM

Thanks

Reference

1- J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, and P. R. Roberge. 1995. "Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell." J. Electrochem. Soc. (The Electrochemical Society, Inc.) 142 (1): 9-15. doi: 10.1149/1.2043959.
2- Jeferson M. Correa, Felix A. Farret, Vladimir A. Popov, Marcelo G. Simoes. 2005. "Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells." IEEE Transactions on Energy Conversion (IEEE) 20 (1): 211-218. doi:10.1109/TEC.2004.842382.
3- Junbom Kim, Seong-Min Lee, Supramaniam Srinivasan, Charles E. Chamberlin. 1995. "Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation." Journal of The Electrochemical Society (The Electrochemical Society) 142 (8): 2670-2674. doi:10.1149/1.2050072.
4- I. Sadli, P. Thounthong, J.-P. Martin, S. Rael, B. Davat. 2006. "Behaviour of a PEMFC supplying a low voltage static converter." Journal of Power Sources (Elsevier) 156: 119–125. doi:10.1016/j.jpowsour.2005.08.021.
5- J. Padulles, G.W. Ault, J.R. McDonald. 2000. "An integrated SOFC plant dynamic model for power systems simulation." Journal of Power Sources (Elsevier) 86 (1-2): 495-500. doi:10.1016/S0378-7753(99)00430-9.
6- Hauer, K.-H. 2001. "Analysis tool for fuel cell vehicle hardware and software (controls) with an application to fuel economy comparisons of alternative system designs." Ph.D. dissertation, Transportation Technology and Policy, University of California Davis.
7- A. Saadi, M. Becherif, A. Aboubou, M.Y. Ayad. 2013. "Comparison of proton exchange membrane fuel cell static models." Renewable Energy (Elsevier) 56: 64-71. doi:dx.doi.org/10.1016/j.renene.2012.10.012.
8- Diego Feroldi, Marta Basualdo. 2012. "Description of PEM Fuel Cells System." Green Energy and Technology (Springer) 49-72. doi:10.1007/978-1-84996-184-4_2
9- Gottesfeld, Shimshon. n.d. The Polymer Electrolyte Fuel Cell: Materials Issues in a Hydrogen Fueled Power Source. http://physics.oregonstate.edu/~hetheriw/energy/topics/doc/electrochemistry/fc/basic/The_Polymer_Electrolyte_Fuel_Cell.htm
10- Mohamed Becherif, Aïcha Saadi, Daniel Hissel, Abdennacer Aboubou, Mohamed Yacine Ayad. 2011. "Static and dynamic proton exchange membrane fuel cell models." Journal of Hydrocarbons Mines and Environmental Research 2 (1)
11- Larminie, J., Dicks, A., & McDonald, M. S. 2003. Fuel cell systems explained (Vol. 2, pp. 207-225). Chichester, UK: J. Wiley. doi: 10.1002/9781118706992.
12- Rho, Y. W., Srinivasan, S., & Kho, Y. T. 1994. ''Mass transport phenomena in proton exchange membrane fuel cells using o 2/he, o 2/ar, and o 2/n 2 mixtures ii. Theoretical analysis.'' Journal of the Electrochemical Society, 141(8), 2089-2096. doi: 10.1149/1.2055066.
13- U. Chakraborty, A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells, Appl. Sci. 9 (2019) 1066. https://doi.org/10.3390/app9061066.

Cite

If you use OPEM in your research , please cite this paper :

@article{Haghighi2018,
  doi = {10.21105/joss.00676},
  url = {https://doi.org/10.21105/joss.00676},
  year  = {2018},
  month = {jul},
  publisher = {The Open Journal},
  volume = {3},
  number = {27},
  pages = {676},
  author = {Sepand Haghighi and Kasra Askari and Sarmin Hamidi and Mohammad Mahdi Rahimi},
  title = {{OPEM} : Open Source {PEM} Cell Simulation Tool},
  journal = {Journal of Open Source Software}
}


Download OPEM.bib(BibTeX Format)

JOSS DOI badge
Zenodo DOI

Show Your Support

Star This Repo

Give a ⭐️ if this project helped you!

Donate to Our Project

If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .

OPEM Donation

About

OPEM (Open Source PEM Fuel Cell Simulation Tool)

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 92.3%
  • MATLAB 5.8%
  • TeX 1.1%
  • Other 0.8%