-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
261 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Data Preprocessing\n", | ||
"\n", | ||
"The outputs from the `m2g` pipeline is available in our open-access AWS S3 bucket: `s3://open-neurodata/m2`. You can use the file tree to browse the outputs [http://open-neurodata.s3-website-us-east-1.amazonaws.com/](http://open-neurodata.s3-website-us-east-1.amazonaws.com/)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/Users/j1c/miniconda3/envs/m2g/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", | ||
" from .autonotebook import tqdm as notebook_tqdm\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import boto3\n", | ||
"from botocore import UNSIGNED\n", | ||
"from botocore.client import Config\n", | ||
"\n", | ||
"from pathlib import Path\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from graspologic.utils import import_edgelist, pass_to_ranks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"modalities = [\"Diffusion\", \"Functional\"]\n", | ||
"diffusion_datasets = [\n", | ||
" \"SWU4\",\n", | ||
" \"HNU1\",\n", | ||
" \"NKIENH\",\n", | ||
" \"XHCUMS\",\n", | ||
" \"BNU1\",\n", | ||
" \"BNU3\",\n", | ||
" \"NKI1\",\n", | ||
" \"NKI24\",\n", | ||
" \"IPCAS8\",\n", | ||
" \"MRN_1\",\n", | ||
"]\n", | ||
"functional_datasets = [\n", | ||
" \"NYU_2\",\n", | ||
" \"SWU4\",\n", | ||
" \"HNU1\",\n", | ||
" \"XHCUMS\",\n", | ||
" \"UPSM_1\",\n", | ||
" \"BNU3\",\n", | ||
" \"IPCAS7\",\n", | ||
" \"SWU1\",\n", | ||
" \"IPCAS1\",\n", | ||
" \"BNU1\",\n", | ||
"]\n", | ||
"\n", | ||
"datasets = {\"Diffusion\": diffusion_datasets, \"Functional\": functional_datasets}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Fetch from S3 and Download to Local\n", | ||
"\n", | ||
"The files will be stored at `m2g/docs/paper/data/` directory." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Downloading m2g/Diffusion/SWU4-8-27-20-m2g-native-csa-det/... Total files: 422\n", | ||
"Downloading m2g/Diffusion/HNU1-8-27-20-m2g-native-csa-det/... Total files: 300\n", | ||
"Downloading m2g/Diffusion/NKIENH-11-01-20-m2g-native-csa-det/... Total files: 129\n", | ||
"Downloading m2g/Diffusion/XHCUMS-8-27-20-m2g-native-csa-det/... Total files: 117\n", | ||
"Downloading m2g/Diffusion/BNU1-8-27-20-m2g-native-csa-det/... Total files: 114\n", | ||
"Downloading m2g/Diffusion/BNU3-11-01-20-m2g-native-csa-det/... Total files: 47\n", | ||
"Downloading m2g/Diffusion/NKI1-8-24-20-m2g-native-csa-det/... Total files: 40\n", | ||
"Downloading m2g/Diffusion/NKI24-11-01-20-m2g-native-csa-det/... Total files: 38\n", | ||
"Downloading m2g/Diffusion/IPCAS8-8-27-20-m2g-native-csa-det/... Total files: 26\n", | ||
"Downloading m2g/Diffusion/MRN_1-8-27-20-m2g-native-csa-det/... Total files: 19\n", | ||
"Downloading m2g/Functional/NYU_2-11-27-20-m2g-func/... Total files: 494\n", | ||
"Downloading m2g/Functional/SWU4-11-12-20-m2g-func/... Total files: 425\n", | ||
"Downloading m2g/Functional/HNU1-11-12-20-m2g-func/... Total files: 300\n", | ||
"Downloading m2g/Functional/XHCUMS-11-27-20-m2g-func/... Total files: 247\n", | ||
"Downloading m2g/Functional/UPSM_1-11-27-20-m2g-func/... Total files: 230\n", | ||
"Downloading m2g/Functional/BNU3-11-12-20-m2g-func/... Total files: 144\n", | ||
"Downloading m2g/Functional/IPCAS7-11-27-20-m2g-func/... Total files: 144\n", | ||
"Downloading m2g/Functional/SWU1-11-27-20-m2g-func/... Total files: 119\n", | ||
"Downloading m2g/Functional/IPCAS1-11-27-20-m2g-func/... Total files: 118\n", | ||
"Downloading m2g/Functional/BNU1-11-12-20-m2g-func/... Total files: 106\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"parcellation = \"DKT_space-MNI152NLin6_res-2x2x2\"\n", | ||
"bucket = \"open-neurodata\"\n", | ||
"\n", | ||
"for modality in modalities:\n", | ||
" if modality == \"Diffusion\":\n", | ||
" parcellation = \"DKT_space-MNI152NLin6_res-2x2x2\"\n", | ||
" else:\n", | ||
" parcellation = \"DKT_space-MNI152NLin6_res-2x2x2.nii.gz\"\n", | ||
"\n", | ||
" prefix = f\"m2g/{modality}/\"\n", | ||
"\n", | ||
" s3 = boto3.client(\"s3\", config=Config(signature_version=UNSIGNED))\n", | ||
" resp = s3.list_objects_v2(Bucket=bucket, Prefix=prefix, Delimiter=\"/\")\n", | ||
"\n", | ||
" dataset_fullnames = []\n", | ||
" for dset in datasets[modality]:\n", | ||
" for r in resp.get(\"CommonPrefixes\"):\n", | ||
" if dset in r.get(\"Prefix\"):\n", | ||
" dataset_fullnames.append(r.get(\"Prefix\"))\n", | ||
"\n", | ||
" for dset, dset_abbrev in zip(dataset_fullnames, datasets[modality]):\n", | ||
" prefix = f\"{dset}Connectomes/{parcellation}/\"\n", | ||
"\n", | ||
" resp = s3.list_objects_v2(Bucket=bucket, Prefix=prefix, Delimiter=\"/\")\n", | ||
" contents = resp[\"Contents\"]\n", | ||
"\n", | ||
" files = []\n", | ||
" for obj in contents:\n", | ||
" key = obj[\"Key\"]\n", | ||
" if modality == \"Functional\":\n", | ||
" if key.endswith(\".csv\") and \"abs\" in key:\n", | ||
" files.append(key)\n", | ||
" else:\n", | ||
" if key.endswith(\".csv\"):\n", | ||
" files.append(key)\n", | ||
"\n", | ||
" print(f\"Downloading {dset}... Total files: {len(files)}\")\n", | ||
"\n", | ||
" # Save to data folder\n", | ||
" p = Path(f\"./data/{modality}/{dset_abbrev}\")\n", | ||
" p.mkdir(parents=True, exist_ok=True)\n", | ||
"\n", | ||
" # Download files\n", | ||
" for f in files:\n", | ||
" out = p / Path(f).name\n", | ||
" if not out.exists():\n", | ||
" s3.download_file(bucket, f, out)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Compute mean connectomes\n", | ||
"\n", | ||
"This data will be used for plotting in Figure 2." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Computing mean graph for Diffusion SWU4... Total files: 422\n", | ||
"Computing mean graph for Diffusion HNU1... Total files: 300\n", | ||
"Computing mean graph for Diffusion NKIENH... Total files: 129\n", | ||
"Computing mean graph for Diffusion XHCUMS... Total files: 117\n", | ||
"Computing mean graph for Diffusion BNU1... Total files: 114\n", | ||
"Computing mean graph for Diffusion BNU3... Total files: 47\n", | ||
"Computing mean graph for Diffusion NKI1... Total files: 40\n", | ||
"Computing mean graph for Diffusion NKI24... Total files: 38\n", | ||
"Computing mean graph for Diffusion IPCAS8... Total files: 26\n", | ||
"Computing mean graph for Diffusion MRN_1... Total files: 19\n", | ||
"Computing mean graph for Functional NYU_2... Total files: 494\n", | ||
"Computing mean graph for Functional SWU4... Total files: 425\n", | ||
"Computing mean graph for Functional HNU1... Total files: 300\n", | ||
"Computing mean graph for Functional XHCUMS... Total files: 247\n", | ||
"Computing mean graph for Functional UPSM_1... Total files: 230\n", | ||
"Computing mean graph for Functional BNU3... Total files: 144\n", | ||
"Computing mean graph for Functional IPCAS7... Total files: 144\n", | ||
"Computing mean graph for Functional SWU1... Total files: 119\n", | ||
"Computing mean graph for Functional IPCAS1... Total files: 118\n", | ||
"Computing mean graph for Functional BNU1... Total files: 106\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"out_dir = Path(f\"./data/mean_connectomes/\")\n", | ||
"out_dir.mkdir(parents=True, exist_ok=True)\n", | ||
"\n", | ||
"for modality, dsets in datasets.items():\n", | ||
" if modality == \"Functional\":\n", | ||
" keyword = \"*abs*\"\n", | ||
" else:\n", | ||
" keyword = \"*\"\n", | ||
"\n", | ||
" for dset in dsets:\n", | ||
" p = Path(f\"./data/{modality}/{dset}\")\n", | ||
" files = list(p.glob(keyword))\n", | ||
"\n", | ||
" print(\n", | ||
" f\"Computing mean graph for {modality} {dset}... Total files: {len(files)}\"\n", | ||
" )\n", | ||
"\n", | ||
" graphs = import_edgelist(files, \"csv\")\n", | ||
" graphs = [pass_to_ranks(g) for g in graphs]\n", | ||
"\n", | ||
" # Compute mean graph\n", | ||
" mean_graph = np.array(graphs).mean(axis=0)\n", | ||
"\n", | ||
" # Save mean graph\n", | ||
" np.save(out_dir / f\"{len(files):>03}_{modality}_{dset}\", mean_graph)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "m2g", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |