-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 06e91c4
Showing
6 changed files
with
1,458 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
import itertools | ||
import random | ||
|
||
class PCFG(nn.Module): | ||
def __init__(self, nt_states, t_states): | ||
super(PCFG, self).__init__() | ||
self.nt_states = nt_states | ||
self.t_states = t_states | ||
self.states = nt_states + t_states | ||
self.huge = 1e9 | ||
|
||
def logadd(self, x, y): | ||
d = torch.max(x,y) | ||
return torch.log(torch.exp(x-d) + torch.exp(y-d)) + d | ||
|
||
def logsumexp(self, x, dim=1): | ||
d = torch.max(x, dim)[0] | ||
if x.dim() == 1: | ||
return torch.log(torch.exp(x - d).sum(dim)) + d | ||
else: | ||
return torch.log(torch.exp(x - d.unsqueeze(dim).expand_as(x)).sum(dim)) + d | ||
|
||
def _inside(self, unary_scores, rule_scores, root_scores): | ||
#inside step | ||
#unary scores : b x n x T | ||
#rule scores : b x NT x (NT+T) x (NT+T) | ||
#root : b x NT | ||
|
||
# statistics | ||
batch_size = unary_scores.size(0) | ||
n = unary_scores.size(1) | ||
|
||
# uses conventional python numbering scheme: [s, t] represents span [s, t) | ||
# this scheme facilitates fast computation | ||
# f[s, t] = logsumexp(f[s, :] * f[:, t]) | ||
self.beta = unary_scores.new(batch_size, n + 1, n + 1, self.states).fill_(-self.huge) | ||
|
||
# initialization: f[k, k+1] | ||
for k in range(n): | ||
for state in range(self.t_states): | ||
self.beta[:, k, k+1, self.nt_states + state] = unary_scores[:, k, state] | ||
|
||
# span length w, at least 2 | ||
for w in np.arange(2, n+1): | ||
|
||
# start point s | ||
for s in range(n-w+1): | ||
t = s + w | ||
|
||
f = lambda x:torch.logsumexp(x.view(batch_size, self.nt_states, -1), dim=2) | ||
|
||
if w == 2: | ||
tmp = self.beta[:, s, s+1, self.nt_states:].unsqueeze(2).unsqueeze(1) \ | ||
+ self.beta[:, s+1, t, self.nt_states:].unsqueeze(1).unsqueeze(2) \ | ||
+ rule_scores[:, :, self.nt_states:, self.nt_states:] | ||
tmp = f(tmp) | ||
elif w == 3: | ||
tmp1 = self.beta[:, s, s+1, self.nt_states:].unsqueeze(2).unsqueeze(1) \ | ||
+ self.beta[:, s+1, t, :self.nt_states].unsqueeze(1).unsqueeze(2) \ | ||
+ rule_scores[:, :, self.nt_states:, :self.nt_states] | ||
tmp2 = self.beta[:, s, t-1, :self.nt_states].unsqueeze(2).unsqueeze(1) \ | ||
+ self.beta[:, t-1, t, self.nt_states:].unsqueeze(1).unsqueeze(2) \ | ||
+ rule_scores[:, :, :self.nt_states, self.nt_states:] | ||
tmp = self.logadd(f(tmp1), f(tmp2)) | ||
elif w >= 4: | ||
tmp1 = self.beta[:, s, s+1, self.nt_states:].unsqueeze(2).unsqueeze(1) \ | ||
+ self.beta[:, s+1, t, :self.nt_states].unsqueeze(1).unsqueeze(2) \ | ||
+ rule_scores[:, :, self.nt_states:, :self.nt_states] | ||
tmp2 = self.beta[:, s, t-1, :self.nt_states].unsqueeze(2).unsqueeze(1) \ | ||
+ self.beta[:, t-1, t, self.nt_states:].unsqueeze(1).unsqueeze(2) \ | ||
+ rule_scores[:, :, :self.nt_states, self.nt_states:] | ||
tmp3 = self.beta[:, s, s+2:t-1, :self.nt_states].unsqueeze(3).unsqueeze(1) \ | ||
+ self.beta[:, s+2:t-1, t, :self.nt_states].unsqueeze(1).unsqueeze(3) \ | ||
+ rule_scores[:, :, :self.nt_states, :self.nt_states].unsqueeze(2) | ||
tmp = self.logadd(self.logadd(f(tmp1), f(tmp2)), f(tmp3)) | ||
|
||
self.beta[:, s, t, :self.nt_states] = tmp | ||
log_Z = self.beta[:, 0, n, :self.nt_states] + root_scores | ||
log_Z = self.logsumexp(log_Z, 1) | ||
return log_Z | ||
|
||
def _viterbi(self, unary_scores, rule_scores, root_scores): | ||
#unary scores : b x n x T | ||
#rule scores : b x NT x (NT+T) x (NT+T) | ||
|
||
batch_size = unary_scores.size(0) | ||
n = unary_scores.size(1) | ||
|
||
# dummy rules | ||
rule_scores = torch.cat([rule_scores, \ | ||
rule_scores.new(batch_size, self.t_states, self.states, self.states) \ | ||
.fill_(-self.huge)], dim=1) | ||
|
||
self.scores = unary_scores.new(batch_size, n+1, n+1, self.states).fill_(-self.huge) | ||
self.bp = unary_scores.new(batch_size, n+1, n+1, self.states).fill_(-1) | ||
self.left_bp = unary_scores.new(batch_size, n+1, n+1, self.states).fill_(-1) | ||
self.right_bp = unary_scores.new(batch_size, n+1, n+1, self.states).fill_(-1) | ||
self.argmax = unary_scores.new(batch_size, n, n).fill_(-1) | ||
self.argmax_tags = unary_scores.new(batch_size, n).fill_(-1) | ||
self.spans = [[] for _ in range(batch_size)] | ||
|
||
for k in range(n): | ||
for state in range(self.t_states): | ||
self.scores[:, k, k + 1, self.nt_states + state] = unary_scores[:, k, state] | ||
|
||
for w in np.arange(2, n+1): | ||
for s in range(n-w+1): | ||
t = s + w | ||
|
||
tmp = self.scores[:, s, s+1:t, :].unsqueeze(3).unsqueeze(1) \ | ||
+ self.scores[:, s+1:t, t, :].unsqueeze(1).unsqueeze(3) \ | ||
+ rule_scores.unsqueeze(2) | ||
|
||
# view once and marginalize | ||
tmp, max_pos = torch.max(tmp.view(batch_size, self.states, -1), dim=2) | ||
|
||
# step by step marginalization | ||
# tmp = self.logsumexp(tmp, dim=4) | ||
# tmp = self.logsumexp(tmp, dim=3) | ||
# tmp = self.logsumexp(tmp, dim=2) | ||
|
||
max_idx = max_pos / (self.states * self.states) + s + 1 | ||
left_child = (max_pos % (self.states * self.states)) / self.states | ||
right_child = max_pos % self.states | ||
|
||
self.scores[:, s, t, :self.nt_states] = tmp[:, :self.nt_states] | ||
|
||
self.bp[:, s, t, :self.nt_states] = max_idx[:, :self.nt_states] | ||
self.left_bp[:, s, t, :self.nt_states] = left_child[:, :self.nt_states] | ||
self.right_bp[:, s, t, :self.nt_states] = right_child[:, :self.nt_states] | ||
max_score = self.scores[:, 0, n, :self.nt_states] + root_scores | ||
max_score, max_idx = torch.max(max_score, 1) | ||
for b in range(batch_size): | ||
self._backtrack(b, 0, n, max_idx[b].item()) | ||
return self.scores, self.argmax, self.spans | ||
|
||
def _backtrack(self, b, s, t, state): | ||
u = int(self.bp[b][s][t][state]) | ||
assert(s < t), "s: %d, t %d"%(s, t) | ||
left_state = int(self.left_bp[b][s][t][state]) | ||
right_state = int(self.right_bp[b][s][t][state]) | ||
self.argmax[b][s][t-1] = 1 | ||
if s == t-1: | ||
self.spans[b].insert(0, (s, t-1, state)) | ||
self.argmax_tags[b][s] = state - self.nt_states | ||
return None | ||
else: | ||
self.spans[b].insert(0, (s, t-1, state)) | ||
self._backtrack(b, s, u, left_state) | ||
self._backtrack(b, u, t, right_state) | ||
return None |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
#!/usr/bin/env python3 | ||
import numpy as np | ||
import torch | ||
import pickle | ||
|
||
class Dataset(object): | ||
def __init__(self, data_file, load_dep=False): | ||
data = pickle.load(open(data_file, 'rb')) #get text data | ||
self.sents = self._convert(data['source']).long() | ||
self.other_data = data['other_data'] | ||
self.sent_lengths = self._convert(data['source_l']).long() | ||
self.batch_size = self._convert(data['batch_l']).long() | ||
self.batch_idx = self._convert(data['batch_idx']).long() | ||
self.vocab_size = data['vocab_size'][0] | ||
self.num_batches = self.batch_idx.size(0) | ||
self.word2idx = data['word2idx'] | ||
self.idx2word = data['idx2word'] | ||
self.load_dep = load_dep | ||
|
||
def _convert(self, x): | ||
return torch.from_numpy(np.asarray(x)) | ||
|
||
def __len__(self): | ||
return self.num_batches | ||
|
||
def __getitem__(self, idx): | ||
assert(idx < self.num_batches and idx >= 0) | ||
start_idx = self.batch_idx[idx] | ||
end_idx = start_idx + self.batch_size[idx] | ||
length = self.sent_lengths[idx].item() | ||
sents = self.sents[start_idx:end_idx] | ||
other_data = self.other_data[start_idx:end_idx] | ||
sent_str = [d[0] for d in other_data] | ||
tags = [d[1] for d in other_data] | ||
actions = [d[2] for d in other_data] | ||
binary_tree = [d[3] for d in other_data] | ||
spans = [d[5] for d in other_data] | ||
if(self.load_dep): | ||
heads = [d[7] for d in other_data] | ||
batch_size = self.batch_size[idx].item() | ||
# original data includes </s>, which we don't need | ||
data_batch = [sents[:, 1:length-1], length-2, batch_size, tags, actions, | ||
spans, binary_tree, other_data] | ||
if(self.load_dep): | ||
data_batch.append(heads) | ||
return data_batch |
Oops, something went wrong.