Skip to content

Commit

Permalink
Fixed DDLm and style errors associated with new list items.
Browse files Browse the repository at this point in the history
  • Loading branch information
nautolycus committed Apr 24, 2024
1 parent 7dfc600 commit 05c03a9
Showing 1 changed file with 117 additions and 116 deletions.
233 changes: 117 additions & 116 deletions cif_rho.dic
Original file line number Diff line number Diff line change
Expand Up @@ -1712,7 +1712,7 @@ save_atom_rho_multipole_kappa.list
;
_name.category_id atom_rho_multipole_kappa
_name.object_id list
_type.purpose Number
_type.purpose Measurand
_type.source Derived
_type.container List
_type.dimension '[6]'
Expand Down Expand Up @@ -1926,110 +1926,6 @@ save_atom_rho_multipole_radial_slater.atom_label

save_

save_atom_rho_multipole_radial_slater.n_list

_definition.id '_atom_rho_multipole_radial_slater.n_list'
_alias.definition_id '_atom_rho_multipole_radial_slater_n_list'
_definition.update 2024-04-23
_description.text
;
These items are used when the radial dependence of the valence
electron density, R(kappa'(l),l,r), of the atom specified in
atom_rho_multipole.atom_label is expressed as a Slater-type
function [Hansen & Coppens (1978), equation (3)]:

R(kappa'(l),l,r) = [{zeta(l)\}^\{n(l)+3\}^/\{n(l)+2\}!]\
*(kappa'(l)*r)^n(l)^
*exp(-kappa'(l)*zeta(l)*r)

where:
kappa'(l) = atom_rho_multipole_kappa.prime[l]
n(l) = atom_rho_multipole_radial_slater.n[l]
zeta(l)i = atom_rho_multipole_radial_slater.zeta[l]

R(kappa'(l),l,r) appears in the multipole formalism described by
Hansen & Coppens [1978, equation (2)] which gives the
electron density at position vector r with respect to an
atomic nucleus as:

rho(r) = Pc*rho_core(r) + Pv*kappa^3^*rho_valence(kappa*r)
+ sum{k'(l)^3^*R(kappa'(l),l,r)\}\
*sum{P(l,m)*d(l,m,theta,phi)\}\

where:
Pc = atom_rho_multipole_coeff.Pc
Pv = atom_rho_multipole_coeff.Pv
P(0,0) = atom_rho_multipole_coeff.P00
Pc + Pv + P(0,0) = Z (the atomic number) for a neutral atom

kappa = atom_rho_multipole_kappa.base,
kappa'(l) = atom_rho_multipole_kappa.prime[l],
P(l,m) = atom_rho_multipole_coeff.P[lm],

d(l,m,theta,phi) is the spherical harmonic of order l,m at the
position (theta, phi) with respect to spherical coordinates
centred on the atom.

The summations are performed over the index ranges
0 <= l <= lmax, -l <= m <= l respectively, where lmax is
the highest order of multipole applied.

The spherical coordinates are related to the local Cartesian
axes defined in category ATOM_LOCAL_AXES, z is the polar axis
from which the angle theta is measured, and the angle phi is
measured from the x axis in the xy plane with the y axis
having a value of phi = +90 degrees.

rho_core(r) and rho_valence(kappa*r) are the spherical core and
valence densities, respectively. They are obtained from
atomic orbital analytic wavefunctions such as those tabulated
by Clementi & Roetti (1974). They are also the Fourier
transforms of the X-ray scattering factors given in
atom_rho_multipole.scat_core and
atom_rho_multipole.scat_valence.

Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Hansen, N. K. & Coppens, P. (1978).
Acta Cryst. A34, 909-921.
;
_name.category_id atom_rho_multipole_radial_slater
_name.object_id list
_type.purpose Measurand
_type.source Derived
_type.container List
_type.dimension '[5]'
_type.contents Real
_units.code none
_method.purpose Evaluation
_method.expression
;
With s as atom_rho_multipole_radial_slater

atom_rho_multipole_radial_slater.n_list = [ s.n0, s.n1, s.n2, s.n3 ]
;

save_

save_atom_rho_multipole_radial_slater.n_list_su

_definition.id '_atom_rho_multipole_radial_slater.n_list_su'
_definition.update 2024-04-23
_description.text
;
Standard uncertainty of _atom_rho_multipole_radial_slater.n_list.
;
_name.category_id atom_rho_multipole_radial_slater
_name.object_id list_su
_name.linked_item_id '_atom_rho_multipole_radial_slater.n_list'
_type.purpose SU
_type.source Related
_type.container List
_type.dimension '[5]'
_type.contents Real
_units.code none

save_

save_atom_rho_multipole_radial_slater.n0

Expand Down Expand Up @@ -2143,10 +2039,10 @@ save_atom_rho_multipole_radial_slater.n3_su

save_

save_atom_rho_multipole_radial_slater.zeta_list
save_atom_rho_multipole_radial_slater.n_list

_definition.id '_atom_rho_multipole_radial_slater.zeta_list'
_alias.definition_id '_atom_rho_multipole_radial_slater_zeta_list'
_definition.id '_atom_rho_multipole_radial_slater.n_list'
_alias.definition_id '_atom_rho_multipole_radial_slater_n_list'
_definition.update 2024-04-23
_description.text
;
Expand Down Expand Up @@ -2211,7 +2107,7 @@ save_atom_rho_multipole_radial_slater.zeta_list
Acta Cryst. A34, 909-921.
;
_name.category_id atom_rho_multipole_radial_slater
_name.object_id list
_name.object_id n_list
_type.purpose Measurand
_type.source Derived
_type.container List
Expand All @@ -2223,23 +2119,22 @@ save_atom_rho_multipole_radial_slater.zeta_list
;
With s as atom_rho_multipole_radial_slater

atom_rho_multipole_radial_slater.zeta_list = [
s.zeta0, s.zeta1, s.zeta2, s.zeta3]
atom_rho_multipole_radial_slater.n_list = [ s.n0, s.n1, s.n2, s.n3 ]
;

save_

save_atom_rho_multipole_radial_slater.zeta_list_su
save_atom_rho_multipole_radial_slater.n_list_su

_definition.id '_atom_rho_multipole_radial_slater.zeta_list_su'
_definition.id '_atom_rho_multipole_radial_slater.n_list_su'
_definition.update 2024-04-23
_description.text
;
Standard uncertainty of _atom_rho_multipole_radial_slater.zeta_list.
Standard uncertainty of _atom_rho_multipole_radial_slater.n_list.
;
_name.category_id atom_rho_multipole_radial_slater
_name.object_id list_su
_name.linked_item_id '_atom_rho_multipole_radial_slater.zeta_list'
_name.object_id n_list_su
_name.linked_item_id '_atom_rho_multipole_radial_slater.n_list'
_type.purpose SU
_type.source Related
_type.container List
Expand Down Expand Up @@ -2359,6 +2254,112 @@ save_atom_rho_multipole_radial_slater.zeta3_su

_import.get [{'file':templ_attr.cif 'save':general_su}]

save_

save_atom_rho_multipole_radial_slater.zeta_list

_definition.id '_atom_rho_multipole_radial_slater.zeta_list'
_alias.definition_id '_atom_rho_multipole_radial_slater_zeta_list'
_definition.update 2024-04-23
_description.text
;
These items are used when the radial dependence of the valence
electron density, R(kappa'(l),l,r), of the atom specified in
atom_rho_multipole.atom_label is expressed as a Slater-type
function [Hansen & Coppens (1978), equation (3)]:

R(kappa'(l),l,r) = [{zeta(l)\}^\{n(l)+3\}^/\{n(l)+2\}!]\
*(kappa'(l)*r)^n(l)^
*exp(-kappa'(l)*zeta(l)*r)

where:
kappa'(l) = atom_rho_multipole_kappa.prime[l]
n(l) = atom_rho_multipole_radial_slater.n[l]
zeta(l)i = atom_rho_multipole_radial_slater.zeta[l]

R(kappa'(l),l,r) appears in the multipole formalism described by
Hansen & Coppens [1978, equation (2)] which gives the
electron density at position vector r with respect to an
atomic nucleus as:

rho(r) = Pc*rho_core(r) + Pv*kappa^3^*rho_valence(kappa*r)
+ sum{k'(l)^3^*R(kappa'(l),l,r)\}\
*sum{P(l,m)*d(l,m,theta,phi)\}\

where:
Pc = atom_rho_multipole_coeff.Pc
Pv = atom_rho_multipole_coeff.Pv
P(0,0) = atom_rho_multipole_coeff.P00
Pc + Pv + P(0,0) = Z (the atomic number) for a neutral atom

kappa = atom_rho_multipole_kappa.base,
kappa'(l) = atom_rho_multipole_kappa.prime[l],
P(l,m) = atom_rho_multipole_coeff.P[lm],

d(l,m,theta,phi) is the spherical harmonic of order l,m at the
position (theta, phi) with respect to spherical coordinates
centred on the atom.

The summations are performed over the index ranges
0 <= l <= lmax, -l <= m <= l respectively, where lmax is
the highest order of multipole applied.

The spherical coordinates are related to the local Cartesian
axes defined in category ATOM_LOCAL_AXES, z is the polar axis
from which the angle theta is measured, and the angle phi is
measured from the x axis in the xy plane with the y axis
having a value of phi = +90 degrees.

rho_core(r) and rho_valence(kappa*r) are the spherical core and
valence densities, respectively. They are obtained from
atomic orbital analytic wavefunctions such as those tabulated
by Clementi & Roetti (1974). They are also the Fourier
transforms of the X-ray scattering factors given in
atom_rho_multipole.scat_core and
atom_rho_multipole.scat_valence.

Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Hansen, N. K. & Coppens, P. (1978).
Acta Cryst. A34, 909-921.
;
_name.category_id atom_rho_multipole_radial_slater
_name.object_id zeta_list
_type.purpose Measurand
_type.source Derived
_type.container List
_type.dimension '[5]'
_type.contents Real
_units.code none
_method.purpose Evaluation
_method.expression
;
With s as atom_rho_multipole_radial_slater

atom_rho_multipole_radial_slater.zeta_list = [
s.zeta0, s.zeta1, s.zeta2, s.zeta3]
;

save_

save_atom_rho_multipole_radial_slater.zeta_list_su

_definition.id '_atom_rho_multipole_radial_slater.zeta_list_su'
_definition.update 2024-04-23
_description.text
;
Standard uncertainty of _atom_rho_multipole_radial_slater.zeta_list.
;
_name.category_id atom_rho_multipole_radial_slater
_name.object_id zeta_list_su
_name.linked_item_id '_atom_rho_multipole_radial_slater.zeta_list'
_type.purpose SU
_type.source Related
_type.container List
_type.dimension '[5]'
_type.contents Real
_units.code none

save_

loop_
Expand Down

0 comments on commit 05c03a9

Please sign in to comment.