Code for Second Annual Data Science Bowl. 16th place.
A Hybrid Deep Neural Network using CNN and MLP.
It is used only 3 SAX slices to predict the actual volume, is not used segmentation techniques, is not needed hand-labelings.
- Ubuntu 14.04
- 12GB RAM
- GPU & CUDA (I used EC2 g2.2xlarge instance)
- Torch7
- Ruby
- dicom (rubygems)
- graphicsmagick (luarocks)
Install CUDA and Torch7 first. See NVIDIA CUDA Getting Started Guide for Linux and Getting started with Torch.
sudo apt-get install libgraphicsmagick-dev ruby rubygems
sudo gem install dicom
luarocks install graphicsmagick
Place the data files into a subfolder ./data.
% ls ./data
test train train.csv validate validate.csv
./run_all.sh
./run_all_test.sh
NOTICE: I used 8 g2.xlarge instances to execute this script. See comments in ./run_all_test.sh
.