forked from feder-observatory/stellarphot
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
First draft notebook calculating Broeg weighted mags
- Loading branch information
Showing
1 changed file
with
312 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,312 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7e195b60-aa45-404b-ae1b-180a7089cac4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from astropy.table import Table, join \n", | ||
"\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from matplotlib import pyplot as plt\n", | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "05672aa4-ce5c-4be2-bf37-aa5b5f47c115", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from broeg_weights import broeg_weights2" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f9596998-0aef-4a47-87da-e54f773c7841", | ||
"metadata": {}, | ||
"source": [ | ||
"## 👇👇 change the file name 👇👇" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "fc155555-0847-4a50-ac40-46d407a3b1ed", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"use_phot = Table.read('../../Combined/TIC-81247877-combined-killer-brooks-ified.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2852b113-821b-48ff-8760-721ff71802aa", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"star_ids = np.array(sorted(set(use_phot['star_id'])))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "be327b49-65e7-4c9e-ab4f-1391d4d09f7c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mags = []\n", | ||
"errs = []\n", | ||
"good_star_ids = []\n", | ||
"for star_id in star_ids:\n", | ||
" mag = use_phot[use_phot[\"star_id\"] == star_id][\"mag_inst\"]\n", | ||
" err = use_phot[use_phot[\"star_id\"] == star_id][\"mag_error\"]\n", | ||
" if np.isnan(mag).any():\n", | ||
" continue\n", | ||
" good_star_ids.append(star_id)\n", | ||
" mags.append(mag)\n", | ||
" errs.append(err)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ed648acb-ecb8-4f7f-846d-00940a7e8c30", | ||
"metadata": {}, | ||
"source": [ | ||
"## Number of stars input, number of stars with no NaNs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ee43cf36-9fa6-4f4a-a662-fd04a1dd770a", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"len(star_ids), len(good_star_ids)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b5ae488c-a42e-4a12-9dfd-2f79eac5e89b", | ||
"metadata": {}, | ||
"source": [ | ||
"Check for any stars that are missing data..." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1cd4ba06-a0f9-4fe7-8c0e-d8eb99427e6c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"n_data = [len(mag) for mag in mags]\n", | ||
"n_err = [len(err) for err in errs]\n", | ||
"\n", | ||
"len(mags), len(errs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "cb55c400-7740-460b-abe1-1d977bbee278", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"n_max = max(n_data)\n", | ||
"\n", | ||
"bad_star_id_index = []\n", | ||
"for i, n in enumerate(n_data):\n", | ||
" if n != n_max:\n", | ||
" print(f\"Bad {i=} with {n=}\")\n", | ||
" bad_star_id_index.append(i)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "03c5bb67-30a6-4ebc-9716-7fd37e2a3eb4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for idx in bad_star_id_index:\n", | ||
" del good_star_ids[idx]\n", | ||
" del mags[idx]\n", | ||
" del errs[idx]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "af9efa44-9bd1-481c-8fd5-d10977a51e6f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mags_a = np.array(mags)\n", | ||
"errs_a = np.array(errs)\n", | ||
"mags_a.shape, errs_a.shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d348ff35-c396-42cd-9258-64dad04a5b5d", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"weights, lights = broeg_weights2(mags_a, errs_a)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e8e699bd-4500-43d3-8940-fdf9ca74a163", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"len(weights)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a6116368-e66d-4f5c-a663-5094d505c26a", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.plot(weights[-1] - weights[-2])\n", | ||
"#plt.ylim(0.002, 0.004)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8b6c8a52-ea5f-4bd3-a4ac-3293a8cae483", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.plot(weights[0], label=\"0\")\n", | ||
"plt.plot(weights[-1], label=\"-1\")\n", | ||
"plt.legend()\n", | ||
"plt.grid()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "12483d7d-698a-4077-b354-935d250edee1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"lights[-1].shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c02a61e2-5bcf-4f82-8c96-24f58ce95289", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"good_star_ids[np.argmax(weights[0])]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4162f569-3855-443d-b328-7016d5f7143e", | ||
"metadata": {}, | ||
"source": [ | ||
"## 👇👇 set which star you want to plot 👇👇" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5e8435c8-c3e3-4c49-b933-39cc5c493bf5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"da_star = 303\n", | ||
"da_index = np.where(np.array(good_star_ids) == da_star)[0][0]\n", | ||
"da_index, good_star_ids[da_index]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7b5cfc76-dfdb-4df2-8843-e24c4900b560", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.plot(lights[-1][da_index, :], '.')\n", | ||
"plt.grid()\n", | ||
"plt.ylim(reversed(plt.ylim()))\n", | ||
"plt.xlabel('data point number')\n", | ||
"plt.ylabel('differential magnitude')\n", | ||
"plt.title(f'Star ID: {da_star}')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "05e25851-200c-455f-8f0b-631d58651e4d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"just_da_star = use_phot[use_phot['star_id'] == da_star]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "671e1989-8c82-44a9-a36e-a9106800d020", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"plt.plot(just_da_star['mag_inst_cal'], '.')\n", | ||
"plt.grid()\n", | ||
"plt.ylim(reversed(plt.ylim()))\n", | ||
"plt.xlabel('data point number')\n", | ||
"plt.ylabel('calibrated magnitude')\n", | ||
"plt.title(f'Star ID: {da_star}')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8286191d-9f08-43ab-ae7d-86351f3a3c55", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |