Skip to content

murchinroom/emotext

Repository files navigation

emotext: Emotions in Chinese Texts

中文文本情感分析

使用大连理工大学情感本体库:

  • 徐琳宏,林鸿飞,潘宇,等.情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185.
  • 词典来源: http://ir.dlut.edu.cn/info/1013/1142.htm
  • [emotext/dict.csv] 由上述词典转换成的 csv 格式。如使用本资源,请按照原作者要求,请引用上述论文。

参考实现:

Getting Started

Poetry (recommended):

git clone <this-repo>

pyenv local 3.10.10
poetry install
poetry run python emotext/httpapi.py --port 9003

or, install dependencies by PIP (no one tested yet):

pip install --requirement requirements.txt

Usage

请求:

curl -X POST -d '我今天很开心' http://localhost:9003

响应:

{
   "emotions" : {
      "NN" : 12.19853498427,
      "PA" : 20.33089164045
   },
   "polarity" : {
      "negative" : 4.06617832809,
      "positive" : 4.06617832809
   },
   "va" : {
      "arousal" : 0.65125,
      "valence" : 0.59875
   }
}

Details for dev

DLUT 中文情感词典

大连理工情感词典(以下简称 DLUT)把情感分成了 7 大类,21 小类(忽略英文描述那一栏,那个系之前瞎写的。)。

DLUT Emotic
编号 情感大类 情感类 例词 emotion categories with definitions
1 快乐(PA) 喜悦、欢喜、笑眯眯、欢天喜地 17. Happiness: feeling delighted; feeling enjoyment or amusement
20. Pleasure: feeling of delight in the senses
2 安心(PE) 踏实、宽心、定心丸、问心无愧 6. Confidence: feeling of being certain; conviction that an outcome will be favorable; encouraged; proud
19. Peace: well being and relaxed; no worry; having positive thoughts or sensations; satisfied
3 尊敬(PD) 恭敬、敬爱、毕恭毕敬、肃然起敬 13. Esteem: feelings of favourable opinion or judgement; respect; admiration; gratefulness
4 赞扬(PH) 英俊、优秀、通情达理、实事求是 14. Excitement: feeling enthusiasm; stimulated; energetic
5 相信(PG) 信任、信赖、可靠、毋庸置疑 4. Anticipation: state of looking forward; hoping on or getting prepared for possible future events
12. Engagement: paying attention to something; absorbed into something; curious; intereste
6 喜爱(PB) 倾慕、宝贝、一见钟情、爱不释手 1. Affection: fond feelings; love; tenderness
7 祝愿(PK) 渴望、保佑、福寿绵长、万寿无疆 4. Anticipation: state of looking forward; hoping on or getting prepared for possible future events
8 愤怒(NA) 气愤、恼火、大发雷霆、七窍生烟 2. Anger: intense displeasure or rage; furious; resentful
9 悲伤(NB) 忧伤、悲苦、心如刀割、悲痛欲绝 21. Sadness: feeling unhappy, sorrow, disappointed, or discouraged
23. Suffering: psychological or emotional pain; distressed; an- guished
22. Sensitivity: feeling of being physically or emotionally wounded; feeling delicate or vulnerable
10 失望(NJ) 憾事、绝望、灰心丧气、心灰意冷 5. Aversion: feeling disgust, dislike, repulsion; feeling hate
21. Sadness: feeling unhappy, sorrow, disappointed, or discouraged
11 疚(NH) 内疚、忏悔、过意不去、问心有愧 25. Sympathy: state of sharing others emotions, goals or troubles; supportive; compassionate
12 思(PF) 思念、相思、牵肠挂肚、朝思暮想 15. Fatigue: weariness; tiredness; sleepy
13 慌(NI) 慌张、心慌、不知所措、手忙脚乱 18. Pain: physical suffering
3. Annoyance: bothered by something or someone; irritated; impa- tient; frustrated
14 恐惧(NC) 胆怯、害怕、担惊受怕、胆颤心惊 16. Fear: feeling suspicious or afraid of danger, threat, evil or pain; horror
15 羞(NG) 害羞、害臊、面红耳赤、无地自容 11. Embarrassment: feeling ashamed or guilty
16 烦闷(NE) 憋闷、烦躁、心烦意乱、自寻烦恼 9. Disquietment: nervous; worried; upset; anxious; tense; pres- sured; alarmed
8. Disconnection: feeling not interested in the main event of the surrounding; indifferent; bored; distracted
17 憎恶(ND) 反感、可耻、恨之入骨、深恶痛绝 5. Aversion: feeling disgust, dislike, repulsion; feeling hate
7. Disapproval: feeling that something is wrong or reprehensible; contempt; hostile
18 贬责(NN) 呆板、虚荣、杂乱无章、心狠手辣 3. Annoyance: bothered by something or someone; irritated; impa- tient; frustrated
19 妒忌(NK) 眼红、吃醋、醋坛子、嫉贤妒能 26. Yearning: strong desire to have something; jealous; envious; lust
20 怀疑(NL) 多心、生疑、将信将疑、疑神疑鬼 10. Doubt/Confusion: difficulty to understand or decide; thinking about different options
21 惊奇(PC) 奇怪、奇迹、大吃一惊、瞠目结舌 24. Surprise: sudden discovery of something unexpected

工作原理

emotext 中,实现了利用大连理工大学情感本体库进行中文文本情感分析。

从 DLUT 的网站下载到情感词典:http://ir.dlut.edu.cn/info/1013/1142.htm

它给的是 Excel 表格,为了方便,我们将其重新导出为 CSV 格式,得到的文件形如:

词语,词性种类,词义数,词义序号,情感分类,强度,极性,辅助情感分类,强度,极性
脏乱,adj,1,1,NN,7,2,,,
糟报,adj,1,1,NN,5,2,,,
战祸,noun,1,1,ND,5,2,NC,5,2
招灾,adj,1,1,NN,5,2,,,

接下来,要把这个大表读到程序里。我们把「词语 + 情感」视为一个 Word 对象,如果一个词有「辅助情感分类」则把它看成两个 Word:

class Word:
    word: str
    emotion: str
    intensity: int  # 情感强度: 分为 1, 3, 5, 7, 9 五档,9 表示强度最大,1 为强度最小。
    polarity: Polarity

再写一个 Emotions 类来放所有的这些 Word 即对应情感。用一个 self.words dict,把每种情感的 Word 分开放。

class Emotions:
    def __init__(self):
        self.words = {emo: [] for emo in emotions}  # {"emotion": [words...]}
        with open('/path/to/dict.csv') as f:
            self._read_dict(f)

现在给定一个词汇,只需在表中查找,若存在,就到的了情感与对应强度(Word 对象);若不存在,就认为这个词没有感情,直接忽略。

def _find_word(self, w: str) -> List[Word]:
    result = []
    for emotion, words_of_emotion in self.words.items():
        ws = list(map(lambda x: x.word, words_of_emotion))
        if w in ws:
            result.append(words_of_emotion[ws.index(w)])
    return result

而给定一个句子,则先进行分词,取出句子中的前 20 个关键词,做前面的查表分析,将所有得到的关键词情感累加,就得到了句子的情感:

def emotion_count(self, text) -> Emotions:
    emotions = empty_emotions()

    keywords = jieba.analyse.extract_tags(text, withWeight=True)

    for word, weight in keywords:
        for w in self._find_word(word):
            emotions[w.emotion] += w.intensity * weight

    return emotions

如果你不喜欢看文字叙述,也不爱阅读代码,那么可以数学一下。这里我们使用 TF-IDF 算法抽取关键词:

  • TF(term frequency, 词频):字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降:${\displaystyle \mathrm {tf} (t,d)={\frac {f_{t,d}}{\sum {t'\in d}{f{t',d}}}}}$
  • IDF(inverse document frequency, 逆向文件频率):由总文件数目除以包含该词语之文件的数目,再将得到的商取对数:$ \mathrm{idf}(t, D) = \log \frac{N}{|{d \in D: t \in d}|}$,这里 $D$ 使用默认的常见词典。
  • TF-IDF 权重就是把两个乘起来,达到过滤掉常见的词语,保留重要的词语的目的:${\displaystyle \mathrm {tfidf} (t,d,D)=\mathrm {tf} (t,d)\cdot \mathrm {idf} (t,D)}$
  • 将词语按照得到的 tfidf 权重从大到小排序,取前 20 个作为关键词。
  • 我们认为关键词最终的情感 $E_t$ 为由该词语的情感强度 $I_t$ (查字典得到)以及它的 TF-IDF 权共同决定:$\mathrm{E}_t=I_t \cdot \mathrm {tfidf} (t,d,D)$
  • 那么文本 $d$ 最终的总情感为所有关键词情感的叠加:

$$ E(d)=\sum_{t \in \mathrm{key}(d, D)}I_t\cdot \mathrm {tfidf} (t,d,D) $$

这里我们并没有分析句子的连续特征,只是简单的用关键词分析,但对于分析常见的,不是藏的非常深的句子已经可以用了。

>>> t = '后悔也都没有用 还不如一切没有发生过 不过就是又少一个诗人 换一个人沉迷你的笑'
>>> r = Emotext.emotion_count(t)
>>> r.emotions = softmax(r.emotions)
>>> e = Emotion(**r.emotions)
Emotion(PA=0.0, PE=0.0, PD=0.0, PH=0.0, PG=0.2428551306285703, PB=0.0, PK=0.0, NA=0.0, NB=0.0, NJ=0.41260819965515805, NH=0.175202571704109, PF=0.0, NI=0.0, NC=0.0, NG=0.0, NE=0.1693340980121628, ND=0.0, NN=0.0, NK=0.0, NL=0.0, PC=0.0)

这里我们获取到了 NJ、PG、NH、NE 的情感,即:失望,相信,内疚,和烦闷。差不多,至于文字下埋藏的也许是喜爱的情感?我们目前这种方式并不能让计算机理解,这是个缺陷。

About

Text emotion analysis | 中文文本情感分析

Resources

Stars

Watchers

Forks

Packages

No packages published