forked from Qiskit/rustworkx
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add function to find densest subgraph
Fixes Qiskit#570
- Loading branch information
Showing
2 changed files
with
203 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
// Licensed under the Apache License, Version 2.0 (the "License"); you may | ||
// not use this file except in compliance with the License. You may obtain | ||
// a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | ||
// License for the specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use hashbrown::{HashMap, HashSet}; | ||
|
||
use petgraph::graph::NodeIndex; | ||
use petgraph::prelude::*; | ||
use petgraph::visit::IntoEdgeReferences; | ||
use petgraph::EdgeType; | ||
|
||
use rayon::prelude::*; | ||
|
||
use numpy::ToPyArray; | ||
use pyo3::prelude::*; | ||
use pyo3::Python; | ||
|
||
use crate::digraph; | ||
use crate::graph; | ||
use crate::StablePyGraph; | ||
|
||
struct SubsetResult { | ||
pub count: usize, | ||
pub error: f64, | ||
pub map: Vec<NodeIndex>, | ||
pub subgraph: Vec<[NodeIndex; 2]>, | ||
} | ||
|
||
pub fn densest_subgraph<Ty>( | ||
py: Python, | ||
graph: &StablePyGraph<Ty>, | ||
num_nodes: usize, | ||
weight_callback: Option<PyObject>, | ||
) -> PyResult<(PyObject, PyObject, PyObject)> | ||
where | ||
Ty: EdgeType + Sync, | ||
{ | ||
let node_indices: Vec<NodeIndex> = graph.node_indices().collect(); | ||
let float_callback = | ||
|callback: PyObject, source_node: usize, target_node: usize| -> PyResult<f64> { | ||
let res = callback.as_ref(py).call1((source_node, target_node))?; | ||
res.extract() | ||
}; | ||
let mut weight_map: Option<HashMap<[NodeIndex; 2], f64>> = None; | ||
|
||
if weight_callback.is_some() { | ||
let mut inner_weight_map: HashMap<[NodeIndex; 2], f64> = | ||
HashMap::with_capacity(graph.edge_count()); | ||
let callback = weight_callback.as_ref().unwrap(); | ||
for edge in graph.edge_references() { | ||
let source: NodeIndex = edge.source(); | ||
let target: NodeIndex = edge.target(); | ||
let weight = float_callback(callback.clone_ref(py), source.index(), target.index())?; | ||
inner_weight_map.insert([source, target], weight); | ||
} | ||
weight_map = Some(inner_weight_map); | ||
} | ||
let reduce_identity_fn = || -> SubsetResult { | ||
SubsetResult { | ||
count: 0, | ||
map: Vec::new(), | ||
error: std::f64::INFINITY, | ||
subgraph: Vec::new(), | ||
} | ||
}; | ||
|
||
let reduce_fn = |best: SubsetResult, curr: SubsetResult| -> SubsetResult { | ||
if weight_callback.is_some() { | ||
if curr.count >= best.count && curr.error <= best.error { | ||
curr | ||
} else { | ||
best | ||
} | ||
} else if curr.count > best.count { | ||
curr | ||
} else { | ||
best | ||
} | ||
}; | ||
|
||
let best_result = node_indices | ||
.into_par_iter() | ||
.map(|index| { | ||
let mut subgraph: Vec<[NodeIndex; 2]> = Vec::with_capacity(num_nodes); | ||
let mut bfs = Bfs::new(&graph, index); | ||
let mut bfs_vec: Vec<NodeIndex> = Vec::with_capacity(num_nodes); | ||
let mut bfs_set: HashSet<NodeIndex> = HashSet::with_capacity(num_nodes); | ||
|
||
let mut count = 0; | ||
while let Some(node) = bfs.next(&graph) { | ||
bfs_vec.push(node); | ||
bfs_set.insert(node); | ||
count += 1; | ||
if count >= num_nodes { | ||
break; | ||
} | ||
} | ||
let mut connection_count = 0; | ||
for node in &bfs_vec { | ||
for j in graph.node_indices() { | ||
if graph.contains_edge(*node, j) && bfs_set.contains(&j){ | ||
connection_count += 1; | ||
subgraph.push([*node, j]); | ||
} | ||
} | ||
} | ||
let error = match &weight_map { | ||
Some(map) => subgraph.iter().map(|edge| map[edge]).sum::<f64>() / num_nodes as f64, | ||
None => 0., | ||
}; | ||
SubsetResult { | ||
count: connection_count, | ||
error, | ||
map: bfs_vec, | ||
subgraph, | ||
} | ||
}) | ||
.reduce(reduce_identity_fn, reduce_fn); | ||
let best_map: Vec<usize> = best_result.map.iter().map(|x| x.index()).collect(); | ||
let mapping: HashMap<usize, usize> = best_map | ||
.iter() | ||
.enumerate() | ||
.map(|(best_edge, edge)| (*edge, best_edge)) | ||
.collect(); | ||
let new_cmap: Vec<[usize; 2]> = best_result | ||
.subgraph | ||
.iter() | ||
.map(|c| [mapping[&c[0].index()], mapping[&c[1].index()]]) | ||
.collect(); | ||
let rows: Vec<usize> = new_cmap.iter().map(|edge| edge[0]).collect(); | ||
let cols: Vec<usize> = new_cmap.iter().map(|edge| edge[1]).collect(); | ||
Ok(( | ||
rows.to_pyarray(py).into(), | ||
cols.to_pyarray(py).into(), | ||
best_map.to_pyarray(py).into(), | ||
)) | ||
} | ||
|
||
/// Find densest subgraph in a :class:`~.PyGraph` | ||
/// | ||
/// This method does not provide any guarantees on the approximation as it | ||
/// does a naive search using BFS traversal. | ||
/// | ||
/// :param PyDigraph graph: The graph to find | ||
/// :param int num_nodes: The number of nodes in the subgraph to find | ||
/// :param func weight_callback: An optional callable that if specified will be | ||
/// passed the node indices of each edge in the graph and it is expected to | ||
/// return a float value. If specified the lowest avg weight for edges in | ||
/// a found subgraph will be a criteria for selection in addition to the | ||
/// connectivity of the subgraph. | ||
/// :returns: A tuple of 3 numpy arrays for efficient sparse matrix creation | ||
/// of the adjacency matrix of the subgraph mapping the values back to the | ||
/// node indices on the original graph. | ||
/// :rtype: (rows, cols, value) | ||
#[pyfunction] | ||
#[pyo3(text_signature = "(graph. num_nodes, /, weight_callback=None)")] | ||
pub fn graph_dense_subgraph( | ||
py: Python, | ||
graph: &graph::PyGraph, | ||
num_nodes: usize, | ||
weight_callback: Option<PyObject>, | ||
) -> PyResult<(PyObject, PyObject, PyObject)> { | ||
densest_subgraph(py, &graph.graph, num_nodes, weight_callback) | ||
} | ||
|
||
/// Find densest subgraph in a :class:`~.PyDiGraph` | ||
/// | ||
/// This method does not provide any guarantees on the approximation as it | ||
/// does a naive search using BFS traversal. | ||
/// | ||
/// :param PyDigraph graph: The graph to find | ||
/// :param int num_nodes: The number of nodes in the subgraph to find | ||
/// :param func weight_callback: An optional callable that if specified will be | ||
/// passed the node indices of each edge in the graph and it is expected to | ||
/// return a float value. If specified the lowest avg weight for edges in | ||
/// a found subgraph will be a criteria for selection in addition to the | ||
/// connectivity of the subgraph. | ||
/// :returns: A tuple of 3 numpy arrays for efficient sparse matrix creation | ||
/// of the adjacency matrix of the subgraph mapping the values back to the | ||
/// node indices on the original graph. | ||
/// :rtype: (rows, cols, value) | ||
#[pyfunction] | ||
#[pyo3(text_signature = "(graph. num_nodes, /, weight_callback=None)")] | ||
pub fn digraph_dense_subgraph( | ||
py: Python, | ||
graph: &digraph::PyDiGraph, | ||
num_nodes: usize, | ||
weight_callback: Option<PyObject>, | ||
) -> PyResult<(PyObject, PyObject, PyObject)> { | ||
densest_subgraph(py, &graph.graph, num_nodes, weight_callback) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters