Skip to content

Code for Unsupervised Learning via Meta-Learning.

License

Notifications You must be signed in to change notification settings

mpiseno/cactus-protonets

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CACTUs-ProtoNets

CACTUs-ProtoNets: Clustering to Automatically Generate Tasks for Unsupervised Prototypical Networks.

This code was used to produce the CACTUs-Protonets results and baselines in the paper Unsupervised Learning via Meta-Learning.

This repository was built off of Prototypical Networks for Few-Shot Learning.

Dependencies

The code was tested with the following setup:

  • Ubuntu 16.04
  • Python 3.6.6
  • PyTorch 0.4.0

Instructions:

  • Install PyTorch and torchvision.
  • Install torchnet by running pip install git+https://github.com/pytorch/tnt.git@master.
  • Install the protonets package by running python setup.py install or python setup.py develop.
  • Install scikit-learn.

Data

The Omniglot splits with ACAI and BiGAN encodings used for the results in the paper are available here. Download and extract the archive's contents into this directory.

Unfortunately, due to licensing issues, I am not at liberty to re-distribute the miniImageNet or CelebA datasets. The code for these datasets is still presented for posterity.

Usage

You can find examples of scripts in /scripts. All results were obtained using a single GPU.

Credits

The unsupervised representations were computed using three open-source codebases from prior works.

Contact

To ask questions or report issues, please open an issue on the issues tracker.

About

Code for Unsupervised Learning via Meta-Learning.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.6%
  • Shell 14.4%