-
Notifications
You must be signed in to change notification settings - Fork 363
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b8f54de
commit a6b8d0b
Showing
2 changed files
with
238 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
# -*- coding: utf-8 -*- | ||
"""Model wrapper based on litellm https://docs.litellm.ai/docs/""" | ||
from abc import ABC | ||
from typing import Union, Any, List, Sequence | ||
import os | ||
|
||
from loguru import logger | ||
|
||
from .model import ModelWrapperBase, ModelResponse | ||
from ..message import MessageBase | ||
from ..utils.tools import _convert_to_str | ||
|
||
try: | ||
import litellm | ||
except ImportError: | ||
litellm = None | ||
|
||
|
||
class LiteLLMWrapperBase(ModelWrapperBase, ABC): | ||
"""The model wrapper based on LiteLLM API.""" | ||
|
||
def __init__( | ||
self, | ||
config_name: str, | ||
model_name: str = None, | ||
api_key: str = None, | ||
api_key_name: str = None, | ||
generate_args: dict = None, | ||
**kwargs: Any, | ||
) -> None: | ||
""" | ||
Args: | ||
config_name (`str`): | ||
The name of the model config. | ||
model_name (`str`, default `None`): | ||
The name of the model to use in OpenAI API. | ||
api_key (`str`, default `None`): | ||
The API key used. | ||
api_key_name (`str`, default `None`): | ||
The API key name used, related to the model_name. | ||
generate_args (`dict`, default `None`): | ||
The extra keyword arguments used in litellm api generation, | ||
e.g. `temperature`, `seed`. | ||
""" | ||
|
||
if model_name is None: | ||
model_name = config_name | ||
logger.warning("model_name is not set, use config_name instead.") | ||
|
||
super().__init__(config_name=config_name) | ||
|
||
if litellm is None: | ||
raise ImportError( | ||
"Cannot find litellm package in current python environment.", | ||
) | ||
|
||
self.model_name = model_name | ||
self.generate_args = generate_args or {} | ||
self.api_key = api_key | ||
self.api_key_name = api_key_name | ||
if api_key is not None and api_key_name is not None: | ||
os.environ[api_key_name] = api_key | ||
self._register_default_metrics() | ||
|
||
def format( | ||
self, | ||
*args: Union[MessageBase, Sequence[MessageBase]], | ||
) -> Union[List[dict], str]: | ||
raise RuntimeError( | ||
f"Model Wrapper [{type(self).__name__}] doesn't " | ||
f"need to format the input. Please try to use the " | ||
f"model wrapper directly.", | ||
) | ||
|
||
|
||
class LiteLLMChatWrapper(LiteLLMWrapperBase): | ||
"""The model wrapper based on litellm chat API.""" | ||
|
||
model_type: str = "litellm_chat" | ||
|
||
def _register_default_metrics(self) -> None: | ||
# Set monitor accordingly | ||
# TODO: set quota to the following metrics | ||
self.monitor.register( | ||
self._metric("call_counter"), | ||
metric_unit="times", | ||
) | ||
self.monitor.register( | ||
self._metric("prompt_tokens"), | ||
metric_unit="token", | ||
) | ||
self.monitor.register( | ||
self._metric("completion_tokens"), | ||
metric_unit="token", | ||
) | ||
self.monitor.register( | ||
self._metric("total_tokens"), | ||
metric_unit="token", | ||
) | ||
|
||
def __call__( | ||
self, | ||
messages: list, | ||
**kwargs: Any, | ||
) -> ModelResponse: | ||
""" | ||
Args: | ||
messages (`list`): | ||
A list of messages to process. | ||
**kwargs (`Any`): | ||
The keyword arguments to litellm chat completions API, | ||
e.g. `temperature`, `max_tokens`, `top_p`, etc. Please refer to | ||
https://docs.litellm.ai/docs/completion/input | ||
for more detailed arguments. | ||
Returns: | ||
`ModelResponse`: | ||
The response text in text field, and the raw response in | ||
raw field. | ||
""" | ||
|
||
# step1: prepare keyword arguments | ||
kwargs = {**self.generate_args, **kwargs} | ||
|
||
# step2: checking messages | ||
if not isinstance(messages, list): | ||
raise ValueError( | ||
"LiteLLM `messages` field expected type `list`, " | ||
f"got `{type(messages)}` instead.", | ||
) | ||
if not all("role" in msg and "content" in msg for msg in messages): | ||
raise ValueError( | ||
"Each message in the 'messages' list must contain a 'role' " | ||
"and 'content' key for LiteLLM API.", | ||
) | ||
|
||
# step3: forward to generate response | ||
response = litellm.completion( | ||
model=self.model_name, | ||
messages=messages, | ||
**kwargs, | ||
) | ||
|
||
# step4: record the api invocation if needed | ||
self._save_model_invocation( | ||
arguments={ | ||
"model": self.model_name, | ||
"messages": messages, | ||
**kwargs, | ||
}, | ||
response=response.model_dump(), | ||
) | ||
|
||
# step5: update monitor accordingly | ||
self.update_monitor(call_counter=1, **response.usage.model_dump()) | ||
|
||
# step6: return response | ||
return ModelResponse( | ||
text=response.choices[0].message.content, | ||
raw=response.model_dump(), | ||
) | ||
|
||
def format( | ||
self, | ||
*args: Union[MessageBase, Sequence[MessageBase]], | ||
) -> List[dict]: | ||
"""Format the input string and dictionary into the unified format. | ||
Note that the format function might not be the optimal way to contruct | ||
prompt for every model, but a common way to do so. | ||
Developers are encouraged to implement their own prompt | ||
engineering strategies if have strong performance concerns. | ||
Args: | ||
args (`Union[MessageBase, Sequence[MessageBase]]`): | ||
The input arguments to be formatted, where each argument | ||
should be a `Msg` object, or a list of `Msg` objects. | ||
In distribution, placeholder is also allowed. | ||
Returns: | ||
`List[dict]`: | ||
The formatted messages in the format that anthropic Chat API | ||
required. | ||
""" | ||
|
||
# Parse all information into a list of messages | ||
input_msgs = [] | ||
for _ in args: | ||
if _ is None: | ||
continue | ||
if isinstance(_, MessageBase): | ||
input_msgs.append(_) | ||
elif isinstance(_, list) and all( | ||
isinstance(__, MessageBase) for __ in _ | ||
): | ||
input_msgs.extend(_) | ||
else: | ||
raise TypeError( | ||
f"The input should be a Msg object or a list " | ||
f"of Msg objects, got {type(_)}.", | ||
) | ||
|
||
# record dialog history as a list of strings | ||
sys_prompt = None | ||
dialogue = [] | ||
for i, unit in enumerate(input_msgs): | ||
if i == 0 and unit.role == "system": | ||
# system prompt | ||
sys_prompt = _convert_to_str(unit.content) | ||
else: | ||
# Merge all messages into a dialogue history prompt | ||
dialogue.append( | ||
f"{unit.name}: {_convert_to_str(unit.content)}", | ||
) | ||
|
||
dialogue_history = "\n".join(dialogue) | ||
|
||
if sys_prompt is None: | ||
user_content_template = "## Dialogue History\n{dialogue_history}" | ||
else: | ||
user_content_template = ( | ||
"{sys_prompt}\n" | ||
"\n" | ||
"## Dialogue History\n" | ||
"{dialogue_history}" | ||
) | ||
|
||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": user_content_template.format( | ||
sys_prompt=sys_prompt, | ||
dialogue_history=dialogue_history, | ||
), | ||
}, | ||
] | ||
|
||
return messages |