-
Notifications
You must be signed in to change notification settings - Fork 69
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d727522
commit e61c1d9
Showing
6 changed files
with
276 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
92 changes: 92 additions & 0 deletions
92
tests/modeldiffs/librispeech_conformer_attention_temperature/compare.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import os | ||
|
||
# Disable GPU access for both jax and pytorch. | ||
os.environ['CUDA_VISIBLE_DEVICES'] = '' | ||
|
||
import jax | ||
import torch | ||
|
||
from algorithmic_efficiency import spec | ||
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_jax.workload import \ | ||
LibriSpeechConformerAttentionTemperatureWorkload as JaxWorkload | ||
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_pytorch.workload import \ | ||
LibriSpeechConformerAttentionTemperatureWorkload as PytWorkload | ||
from tests.modeldiffs.diff import out_diff | ||
|
||
|
||
def key_transform(k): | ||
new_key = [] | ||
for i in k: | ||
if 'ModuleList' in i: | ||
continue | ||
if 'Linear' in i: | ||
if 'NonDynamicallyQuantizableLinear' in i: | ||
i = 'out' | ||
else: | ||
i = i.replace('Linear', 'Dense') | ||
elif 'Conv1d' in i: | ||
i = i.replace('Conv1d', 'Conv') | ||
elif 'MHSAwithQS' in i: | ||
i = i.replace('MHSAwithQS', 'SelfAttention') | ||
elif 'weight' in i: | ||
i = i.replace('weight', 'kernel') | ||
new_key.append(i) | ||
return tuple(new_key) | ||
|
||
|
||
def sd_transform(sd): | ||
out = {} | ||
for k in sd: | ||
if 'Attention' in ''.join(k): | ||
if 'Dense_0' in k[-2]: | ||
# In-proj | ||
new_key = k[:-2] | ||
chunks = sd[k].chunk(3) | ||
for t, c in zip(['query', 'key', 'value'], chunks): | ||
out[new_key + (t, k[-1])] = c | ||
elif 'Dense_1' in k[-2]: | ||
# Out-proj | ||
out[(*k[:-2], 'out', k[-1])] = sd[k] | ||
else: | ||
out[k] = sd[k] | ||
else: | ||
out[k] = sd[k] | ||
return out | ||
|
||
|
||
if __name__ == '__main__': | ||
# pylint: disable=locally-disabled, not-callable | ||
|
||
jax_workload = JaxWorkload() | ||
pytorch_workload = PytWorkload() | ||
|
||
# Test outputs for identical weights and inputs. | ||
wave = torch.randn(2, 320000) | ||
pad = torch.zeros_like(wave) | ||
pad[0, 200000:] = 1 | ||
|
||
jax_batch = {'inputs': (wave.detach().numpy(), pad.detach().numpy())} | ||
pyt_batch = {'inputs': (wave, pad)} | ||
|
||
pytorch_model_kwargs = dict( | ||
augmented_and_preprocessed_input_batch=pyt_batch, | ||
model_state=None, | ||
mode=spec.ForwardPassMode.EVAL, | ||
rng=None, | ||
update_batch_norm=False) | ||
|
||
jax_model_kwargs = dict( | ||
augmented_and_preprocessed_input_batch=jax_batch, | ||
mode=spec.ForwardPassMode.EVAL, | ||
rng=jax.random.PRNGKey(0), | ||
update_batch_norm=False) | ||
|
||
out_diff( | ||
jax_workload=jax_workload, | ||
pytorch_workload=pytorch_workload, | ||
jax_model_kwargs=jax_model_kwargs, | ||
pytorch_model_kwargs=pytorch_model_kwargs, | ||
key_transform=key_transform, | ||
sd_transform=sd_transform, | ||
out_transform=lambda out_outpad: out_outpad[0] * | ||
(1 - out_outpad[1][:, :, None])) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import os | ||
|
||
# Disable GPU access for both jax and pytorch. | ||
os.environ['CUDA_VISIBLE_DEVICES'] = '' | ||
|
||
import jax | ||
import torch | ||
|
||
from algorithmic_efficiency import spec | ||
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_jax.workload import \ | ||
LibriSpeechConformerGeluWorkload as JaxWorkload | ||
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_pytorch.workload import \ | ||
LibriSpeechConformerGeluWorkload as PytWorkload | ||
from tests.modeldiffs.diff import out_diff | ||
|
||
|
||
def key_transform(k): | ||
new_key = [] | ||
for i in k: | ||
if 'ModuleList' in i: | ||
continue | ||
if 'Linear' in i: | ||
if 'NonDynamicallyQuantizableLinear' in i: | ||
i = 'out' | ||
else: | ||
i = i.replace('Linear', 'Dense') | ||
elif 'Conv1d' in i: | ||
i = i.replace('Conv1d', 'Conv') | ||
elif 'MHSAwithQS' in i: | ||
i = i.replace('MHSAwithQS', 'SelfAttention') | ||
elif 'weight' in i: | ||
i = i.replace('weight', 'kernel') | ||
new_key.append(i) | ||
return tuple(new_key) | ||
|
||
|
||
def sd_transform(sd): | ||
out = {} | ||
for k in sd: | ||
if 'Attention' in ''.join(k): | ||
if 'Dense_0' in k[-2]: | ||
# In-proj | ||
new_key = k[:-2] | ||
chunks = sd[k].chunk(3) | ||
for t, c in zip(['query', 'key', 'value'], chunks): | ||
out[new_key + (t, k[-1])] = c | ||
elif 'Dense_1' in k[-2]: | ||
# Out-proj | ||
out[(*k[:-2], 'out', k[-1])] = sd[k] | ||
else: | ||
out[k] = sd[k] | ||
else: | ||
out[k] = sd[k] | ||
return out | ||
|
||
|
||
if __name__ == '__main__': | ||
# pylint: disable=locally-disabled, not-callable | ||
|
||
jax_workload = JaxWorkload() | ||
pytorch_workload = PytWorkload() | ||
|
||
# Test outputs for identical weights and inputs. | ||
wave = torch.randn(2, 320000) | ||
pad = torch.zeros_like(wave) | ||
pad[0, 200000:] = 1 | ||
|
||
jax_batch = {'inputs': (wave.detach().numpy(), pad.detach().numpy())} | ||
pyt_batch = {'inputs': (wave, pad)} | ||
|
||
pytorch_model_kwargs = dict( | ||
augmented_and_preprocessed_input_batch=pyt_batch, | ||
model_state=None, | ||
mode=spec.ForwardPassMode.EVAL, | ||
rng=None, | ||
update_batch_norm=False) | ||
|
||
jax_model_kwargs = dict( | ||
augmented_and_preprocessed_input_batch=jax_batch, | ||
mode=spec.ForwardPassMode.EVAL, | ||
rng=jax.random.PRNGKey(0), | ||
update_batch_norm=False) | ||
|
||
out_diff( | ||
jax_workload=jax_workload, | ||
pytorch_workload=pytorch_workload, | ||
jax_model_kwargs=jax_model_kwargs, | ||
pytorch_model_kwargs=pytorch_model_kwargs, | ||
key_transform=key_transform, | ||
sd_transform=sd_transform, | ||
out_transform=lambda out_outpad: out_outpad[0] * | ||
(1 - out_outpad[1][:, :, None])) |
Empty file.
92 changes: 92 additions & 0 deletions
92
tests/modeldiffs/librispeech_conformer_layernorm/compare.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import os | ||
|
||
# Disable GPU access for both jax and pytorch. | ||
os.environ['CUDA_VISIBLE_DEVICES'] = '' | ||
|
||
import jax | ||
import torch | ||
|
||
from algorithmic_efficiency import spec | ||
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_jax.workload import \ | ||
LibriSpeechConformerLayerNormWorkload as JaxWorkload | ||
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_pytorch.workload import \ | ||
LibriSpeechConformerLayerNormWorkload as PytWorkload | ||
from tests.modeldiffs.diff import out_diff | ||
|
||
|
||
def key_transform(k): | ||
new_key = [] | ||
for i in k: | ||
if 'ModuleList' in i: | ||
continue | ||
if 'Linear' in i: | ||
if 'NonDynamicallyQuantizableLinear' in i: | ||
i = 'out' | ||
else: | ||
i = i.replace('Linear', 'Dense') | ||
elif 'Conv1d' in i: | ||
i = i.replace('Conv1d', 'Conv') | ||
elif 'MHSAwithQS' in i: | ||
i = i.replace('MHSAwithQS', 'SelfAttention') | ||
elif 'weight' in i: | ||
i = i.replace('weight', 'kernel') | ||
new_key.append(i) | ||
return tuple(new_key) | ||
|
||
|
||
def sd_transform(sd): | ||
out = {} | ||
for k in sd: | ||
if 'Attention' in ''.join(k): | ||
if 'Dense_0' in k[-2]: | ||
# In-proj | ||
new_key = k[:-2] | ||
chunks = sd[k].chunk(3) | ||
for t, c in zip(['query', 'key', 'value'], chunks): | ||
out[new_key + (t, k[-1])] = c | ||
elif 'Dense_1' in k[-2]: | ||
# Out-proj | ||
out[(*k[:-2], 'out', k[-1])] = sd[k] | ||
else: | ||
out[k] = sd[k] | ||
else: | ||
out[k] = sd[k] | ||
return out | ||
|
||
|
||
if __name__ == '__main__': | ||
# pylint: disable=locally-disabled, not-callable | ||
|
||
jax_workload = JaxWorkload() | ||
pytorch_workload = PytWorkload() | ||
|
||
# Test outputs for identical weights and inputs. | ||
wave = torch.randn(2, 320000) | ||
pad = torch.zeros_like(wave) | ||
pad[0, 200000:] = 1 | ||
|
||
jax_batch = {'inputs': (wave.detach().numpy(), pad.detach().numpy())} | ||
pyt_batch = {'inputs': (wave, pad)} | ||
|
||
pytorch_model_kwargs = dict( | ||
augmented_and_preprocessed_input_batch=pyt_batch, | ||
model_state=None, | ||
mode=spec.ForwardPassMode.EVAL, | ||
rng=None, | ||
update_batch_norm=False) | ||
|
||
jax_model_kwargs = dict( | ||
augmented_and_preprocessed_input_batch=jax_batch, | ||
mode=spec.ForwardPassMode.EVAL, | ||
rng=jax.random.PRNGKey(0), | ||
update_batch_norm=False) | ||
|
||
out_diff( | ||
jax_workload=jax_workload, | ||
pytorch_workload=pytorch_workload, | ||
jax_model_kwargs=jax_model_kwargs, | ||
pytorch_model_kwargs=pytorch_model_kwargs, | ||
key_transform=key_transform, | ||
sd_transform=sd_transform, | ||
out_transform=lambda out_outpad: out_outpad[0] * | ||
(1 - out_outpad[1][:, :, None])) |