❄️🐉 cryoDRGN: Deep Reconstructing Generative Networks for cryo-EM and cryo-ET heterogeneous reconstruction
CryoDRGN is a neural network based algorithm for heterogeneous cryo-EM reconstruction. In particular, the method models a continuous distribution over 3D structures by using a neural network based representation for the volume.
The latest documentation for cryoDRGN is available in our user guide, including an overview and walkthrough of cryoDRGN installation, training and analysis. A brief quick start is provided below.
For any feedback, questions, or bugs, please file a Github issue or start a Github discussion.
- [NEW]
cryodrgn_utils plot_classes
for analysis visualizations colored by a given set of class labels - [NEW]
cryodrgn_utils make_movies
for animations ofanalyze*
output volumes - implementing automatic mixed-precision training for ab-initio reconstruction for 2-4x speedup
- support for RELION 3.1 .star files with separate optics tables, np.float16 number formats used in RELION .mrcs outputs
cryodrgn backproject_voxel
produces cryoSPARC-style FSC curve plots with phase-randomization correction of automatically generated tight maskscryodrgn downsample
can create a new .star or .txt image stack from the corresponding stack format instead of always writing to an .mrcs stack; now also always puts output files into a folder- fixing issues with
cryodrgn filter
such as less intrusive annotation text andnp.array
instead oflist
output format anddo_pose_sgd
errors - official support for Python 3.11
The official release of cryoDRGN-ET for heterogeneous subtomogram analysis.
- [NEW] Heterogeneous reconstruction of subtomograms. See documentation on gitbook
- Updated
cryodrgn backproject_voxel
for voxel-based homogeneous reconstruction - Major refactor of dataset loading for handling large datasets
Version 3.3
- [NEW]
cryodrgn direct_traversal
to generate interpolations in the conformation latent space between two points - support for .txt files in
write_star
- adding
--datadir
tocryodrgn abinit_homo
for use with .star files - fixing various bugs in
backproject_voxel
, Jupyter demonstration notebooks - support for TestPyPI beta release deployments via
pip
Version 3.2
- [NEW]
cryodrgn_utils clean
for removing extraneous output files from completed experiments - [NEW]
cryodrgn_utils fsc
,cryodrgn_utils fsc_plot
,cryodrgn_utils gen_mask
adapted from existing scripts — for calculating FSCs, plotting them, and generating masks for volumes respectively cryodrgn backproject_voxel
now produces half-maps and a half-map FSC- fixing
filter_star
to accept tilt series as well - fixing assorted bugs in e.g.
write_star
,invert_constrast
, andtrain_vae
(see release notes)
Version 3.1
cryodrgn filter
interface for interactive filtering of particles as an alternative to the cryoDRGN_filter Jupyter notebook
Version 2.3
- Model configuration files are now saved as human-readable config.yaml files (#235)
- Fix machine stamp in output .mrc files for better compatibility with downstream tools (#260)
- Better documentation of help flags in ab initio reconstruction tools (#258)
- [FIX] By default, window images in
cryodrgn abinit_homo
(now consistent with other reconstruction tools) (#258) - [FIX] Reduce memory usage when using
--preprocessed
and--ind
(#272)
Version 2.2
- [NEW] Tools for ab initio homogeneous and heterogeneous reconstruction:
(cryodrgn) $ cryodrgn abinit_homo -h (cryodrgn) $ cryodrgn abinit_het -h
- [NEW] Utils function for writing cryoSPARC .cs/.csg files
[to reimport data into cryoSPARC](#150 (comment)):
(cryodrgn) $ cryodrgn_utils write_cs
- [Improved plotting](#219) in
cryodrgn analyze
- Many codebase improvements with open-source software development practices (e.g. continuous integration tests, black, flake8, pyright, logging, and PyPi packaging).
Version 1.1.x
Updated default parameters forcryodrgn train_vae
with modified positional encoding, larger model
architecture, and accelerated mixed-precision training turned on by default:
- Mixed precision training is now turned on by default (Use
--no-amp
to revert to single precision training) - Encoder/decoder architecture is now 1024x3 by default (Use
--enc-dim 256
and--dec-dim 256
to revert) - Gaussian Fourier featurization for faster training and higher resolution density maps (Use
--pe-type geom_lowf
to revert)
Version 1.0.x
The official version 1.0 release. This version introduces several new tools for analysis of the reconstructed ensembles, and adds functionality for calling utility scripts withcryodrgn_utils {command}
.
- NEW:
cryodrgn analyze_landscape
andcryodrgn analyze_landscape_full
for automatic assignment of classes and conformational landscape visualization. Documentation for this new feature is here: https://www.notion.so/cryodrgn-conformational-landscape-analysis-a5af129288d54d1aa95388bdac48235a. - NEW: Faster training and higher resolution model
with Gaussian Fourier featurization (Use
--pe-type gaussian
) - NEW:
cryodrgn_utils {command} -h
for standalone utility scripts - NEW:
cryodrgn_utils write_star
for converting cryoDRGN particle selections to .star files - Add pytorch native mixed precision training and fix support for pytorch 1.9+
Version 0.3.4
- FIX: Bug in write_starfile.py when provided particle stack is chunked (.txt file)
- Support micrograph coordinates and additional column headers to write_starfile.py
- New helper scripts: analyze_convergence.py (in beta testing) contributed by Barrett Powell (thanks!) and make_random_selection.py for splitting up particle stacks for training
Version 0.3.3
- Faster image preprocessing and smaller memory footprint
- New:
cryodrgn preprocess
for large datasets (in beta testing - see this Notion doc for details) - * Known issue with PyTorch version 1.9+
Version 0.3.2
- New: cryoDRGN_filtering.ipynb for interactive filtering and selection of images from the dataset
- New:
cryodrgn view_config
- Minor performance improvements and compatibility fixes
Version 0.3.1
- New: Script write_starfile.py to convert (filtered) particle selection to a .star file
- More visualizations in
cryodrgn analyze
Version 0.3.0
- New: GPU parallelization with flag
--multigpu
- New: Mode for accelerated mixed precision training with flag
--amp
, available for NVIDIA tensor core GPUs - Interface update: renamed encoder arguments
--qdim
and--qlayers
to--enc-dim
and--enc-layers
; renamed decoder arguments--pdim
and--players
to--dec-dim
and--dec-layers
- Argument default changes: flipped the default for
--invert-data
to True by default, and flipped the default for--window
to True by default - Updated training recommendations in below quick start guide
- Updates to cryodrgn analyze: more visualizations, ordering kmeans volumes according to distances in latent space (previously random), and more features for particle selection and filtering in the Jupiter notebook
Version 0.2.1
- New: Parsing of RELION 3.1 files
- Fix: Compatibility with pytorch 1.5
Version 0.2.0
- New interface and proper python packaging with setup.py. This version has identical functionality and
argument usage as previous versions, however tools are now available from a common entry point. See:
$ cryodrgn -h
- New analysis pipeline
cryodrgn analyze
- New latent space traversal scripts with
cryodrgn graph_traversal
andcryodrgn pc_traversal
.
cryodrgn
may be installed via pip
, and we recommend installing cryodrgn
in a clean conda environment.
# Create and activate conda environment
(base) $ conda create --name cryodrgn python=3.9
(cryodrgn) $ conda activate cryodrgn
# install cryodrgn
(cryodrgn) $ pip install cryodrgn
You can alternatively install a newer, less stable, development version of cryodrgn
using our beta release channel:
(cryodrgn) $ pip install -i https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ cryodrgn --pre
More installation instructions are found in the documentation.
First resize your particle images using the cryodrgn downsample
command:
$ cryodrgn downsample -h
usage: cryodrgn downsample [-h] -D D -o MRCS [--is-vol] [--chunk CHUNK]
[--datadir DATADIR]
mrcs
Downsample an image stack or volume by clipping fourier frequencies
positional arguments:
mrcs Input images or volume (.mrc, .mrcs, .star, .cs, or .txt)
optional arguments:
-h, --help show this help message and exit
-D D New box size in pixels, must be even
-o MRCS Output image stack (.mrcs) or volume (.mrc)
--is-vol Flag if input .mrc is a volume
--chunk CHUNK Chunksize (in # of images) to split particle stack when
saving
--relion31 Flag for relion3.1 star format
--datadir DATADIR Optionally provide path to input .mrcs if loading from a
.star or .cs file
--max-threads MAX_THREADS
Maximum number of CPU cores for parallelization (default: 16)
--ind PKL Filter image stack by these indices
We recommend first downsampling images to 128x128 since larger images can take much longer to train:
$ cryodrgn downsample [input particle stack] -D 128 -o particles.128.mrcs
The maximum recommended image size is D=256, so we also recommend downsampling your images to D=256 if your images are larger than 256x256:
$ cryodrgn downsample [input particle stack] -D 256 -o particles.256.mrcs
The input file format can be a single .mrcs
file, a .txt
file containing paths to multiple .mrcs
files, a RELION
.star
file, or a cryoSPARC .cs
file. For the latter two options, if the relative paths to the .mrcs
are broken,
the argument --datadir
can be used to supply the path to where the .mrcs
files are located.
If there are memory issues with downsampling large particle stacks, add the --chunk 10000
argument to
save images as separate .mrcs
files of 10k images.
CryoDRGN expects image poses to be stored in a binary pickle format (.pkl
). Use the parse_pose_star
or
parse_pose_csparc
command to extract the poses from a .star
file or a .cs
file, respectively.
Example usage to parse image poses from a RELION 3.1 starfile:
$ cryodrgn parse_pose_star particles.star -o pose.pkl
Example usage to parse image poses from a cryoSPARC homogeneous refinement particles.cs file:
$ cryodrgn parse_pose_csparc cryosparc_P27_J3_005_particles.cs -o pose.pkl -D 300
Note: The -D
argument should be the box size of the consensus refinement (and not the downsampled
images from step 1) so that the units for translation shifts are parsed correctly.
CryoDRGN expects CTF parameters to be stored in a binary pickle format (.pkl
).
Use the parse_ctf_star
or parse_ctf_csparc
command to extract the relevant CTF parameters from a .star
file
or a .cs
file, respectively.
Example usage for a .star file:
$ cryodrgn parse_ctf_star particles.star -o ctf.pkl
If the box size and Angstrom/pixel values are not included in the .star file under fields _rlnImageSize
and
_rlnImagePixelSize
respectively, the -D
and --Apix
arguments to parse_ctf_star
should be used instead to
provide the original parameters of the input file (before any downsampling):
$ cryodrgn parse_ctf_star particles.star -D 300 --Apix 1.03 -o ctf.pkl
Example usage for a .cs file:
$ cryodrgn parse_ctf_csparc cryosparc_P27_J3_005_particles.cs -o ctf.pkl
Next, test that pose and CTF parameters were parsed correctly using the voxel-based backprojection script. The goal is to quickly verify that there are no major problems with the extracted values and that the output structure resembles the structure from the consensus reconstruction before training.
Example usage:
$ cryodrgn backproject_voxel projections.128.mrcs \
--poses pose.pkl \
--ctf ctf.pkl \
-o backproject.128 \
--first 10000
The output structure backproject.128/backproject.mrc
will not match the consensus reconstruction exactly
as the backproject_voxel
command backprojects phase-flipped particles onto the voxel grid, and because here we
performed backprojection using only the first 10k images in the stack for quicker results.
If the structure is too noisy, we can try using more images with --first
or the
entire stack instead (without --first
).
Note: If the volume does not resemble your structure, you may need to use the flag --uninvert-data
.
This flips the data sign (e.g. light-on-dark or dark-on-light), which may be needed depending on the
convention used in upstream processing tools.
When the input images (.mrcs), poses (.pkl), and CTF parameters (.pkl) have been prepared, a cryoDRGN model can be trained with following command:
$ cryodrgn train_vae -h
usage: cryodrgn train_vae [-h] -o OUTDIR --zdim ZDIM --poses POSES [--ctf pkl]
[--load WEIGHTS.PKL] [--checkpoint CHECKPOINT]
[--log-interval LOG_INTERVAL] [-v] [--seed SEED]
[--ind PKL] [--uninvert-data] [--no-window]
[--window-r WINDOW_R] [--datadir DATADIR] [--lazy]
[--max-threads MAX_THREADS]
[--tilt TILT] [--tilt-deg TILT_DEG] [-n NUM_EPOCHS]
[-b BATCH_SIZE] [--wd WD] [--lr LR] [--beta BETA]
[--beta-control BETA_CONTROL] [--norm NORM NORM]
[--no-amp] [--multigpu] [--do-pose-sgd]
[--pretrain PRETRAIN] [--emb-type {s2s2,quat}]
[--pose-lr POSE_LR] [--enc-layers QLAYERS]
[--enc-dim QDIM]
[--encode-mode {conv,resid,mlp,tilt}]
[--enc-mask ENC_MASK] [--use-real]
[--dec-layers PLAYERS] [--dec-dim PDIM]
[--pe-type {geom_ft,geom_full,geom_lowf,geom_nohighf,linear_lowf,gaussian,none}]
[--feat-sigma FEAT_SIGMA] [--pe-dim PE_DIM]
[--domain {hartley,fourier}]
[--activation {relu,leaky_relu}]
particles
Train a VAE for heterogeneous reconstruction with known pose
positional arguments:
particles Input particles (.mrcs, .star, .cs, or .txt)
optional arguments:
-h, --help show this help message and exit
-o OUTDIR, --outdir OUTDIR
Output directory to save model
--zdim ZDIM Dimension of latent variable
--poses POSES Image poses (.pkl)
--ctf pkl CTF parameters (.pkl)
--load WEIGHTS.PKL Initialize training from a checkpoint
--checkpoint CHECKPOINT
Checkpointing interval in N_EPOCHS (default: 1)
--log-interval LOG_INTERVAL
Logging interval in N_IMGS (default: 1000)
-v, --verbose Increaes verbosity
--seed SEED Random seed
Dataset loading:
--ind PKL Filter particle stack by these indices
--uninvert-data Do not invert data sign
--no-window Turn off real space windowing of dataset
--window-r WINDOW_R Windowing radius (default: 0.85)
--datadir DATADIR Path prefix to particle stack if loading relative
paths from a .star or .cs file
--lazy Lazy loading if full dataset is too large to fit in
memory (Should copy dataset to SSD)
--max-threads MAX_THREADS
Maximum number of CPU cores for FFT parallelization
(default: 16)
Tilt series:
--tilt TILT Particles (.mrcs)
--tilt-deg TILT_DEG X-axis tilt offset in degrees (default: 45)
Training parameters:
-n NUM_EPOCHS, --num-epochs NUM_EPOCHS
Number of training epochs (default: 20)
-b BATCH_SIZE, --batch-size BATCH_SIZE
Minibatch size (default: 8)
--wd WD Weight decay in Adam optimizer (default: 0)
--lr LR Learning rate in Adam optimizer (default: 0.0001)
--beta BETA Choice of beta schedule or a constant for KLD weight
(default: 1/zdim)
--beta-control BETA_CONTROL
KL-Controlled VAE gamma. Beta is KL target. (default:
None)
--norm NORM NORM Data normalization as shift, 1/scale (default: 0, std
of dataset)
--no-amp Do not use mixed-precision training
--multigpu Parallelize training across all detected GPUs
Pose SGD:
--do-pose-sgd Refine poses with gradient descent
--pretrain PRETRAIN Number of epochs with fixed poses before pose SGD
(default: 1)
--emb-type {s2s2,quat}
SO(3) embedding type for pose SGD (default: quat)
--pose-lr POSE_LR Learning rate for pose optimizer (default: 0.0003)
Encoder Network:
--enc-layers QLAYERS Number of hidden layers (default: 3)
--enc-dim QDIM Number of nodes in hidden layers (default: 1024)
--encode-mode {conv,resid,mlp,tilt}
Type of encoder network (default: resid)
--enc-mask ENC_MASK Circular mask of image for encoder (default: D/2; -1
for no mask)
--use-real Use real space image for encoder (for convolutional
encoder)
Decoder Network:
--dec-layers PLAYERS Number of hidden layers (default: 3)
--dec-dim PDIM Number of nodes in hidden layers (default: 1024)
--pe-type {geom_ft,geom_full,geom_lowf,geom_nohighf,linear_lowf,gaussian,none}
Type of positional encoding (default: gaussian)
--feat-sigma FEAT_SIGMA
Scale for random Gaussian features
--pe-dim PE_DIM Num features in positional encoding (default: image D)
--domain {hartley,fourier}
Decoder representation domain (default: fourier)
--activation {relu,leaky_relu}
Activation (default: relu)
Many of the parameters of this script have sensible defaults. The required arguments are:
- an input image stack (
.mrcs
or other listed file types) --poses
, image poses (.pkl
) that correspond to the input images--ctf
, ctf parameters (.pkl
), unless phase-flipped images are used--zdim
, the dimension of the latent variable-o
, a clean output directory for saving results
Additional parameters which are typically set include:
-n
, Number of epochs to train--uninvert-data
, Use if particles are dark on light (negative stain format)- Architecture parameters with
--enc-layers
,--enc-dim
,--dec-layers
,--dec-dim
--multigpu
to enable parallelized training across multiple GPUs
- It is highly recommended to first train on lower resolution images (e.g. D=128) to sanity check results
- and perform any particle filtering.
Example command to train a cryoDRGN model for 25 epochs on an image dataset projections.128.mrcs
with poses pose.pkl
and ctf parameters ctf.pkl
:
# 8-D latent variable model, small images
$ cryodrgn train_vae projections.128.mrcs \
--poses pose.pkl \
--ctf ctf.pkl \
--zdim 8 -n 25 \
-o 00_cryodrgn128
- After validation, pose optimization, and any necessary particle filtering, then train on the full resolution images (up to D=256):
Example command to train a cryoDRGN model for 25 epochs on an image dataset projections.256.mrcs
with poses pose.pkl
and ctf parameters ctf.pkl
:
# 8-D latent variable model, larger images
$ cryodrgn train_vae projections.256.mrcs \
--poses pose.pkl \
--ctf ctf.pkl \
--zdim 8 -n 25 \
-o 01_cryodrgn256
The number of epochs -n
refers to the number of full passes through the dataset for training, and should be modified
depending on the number of particles in the dataset. For a 100k particle dataset on 1 V100 GPU,
the above settings required ~12 min/epoch for D=128 images and ~47 min/epoch for D=256 images.
If you would like to train longer, a training job can be extended with the --load
argument.
For example to extend the training of the previous example to 50 epochs:
$ cryodrgn train_vae projections.256.mrcs \
--poses pose.pkl \
--ctf ctf.pkl \
--zdim 8 -n 50 \
-o 01_cryodrgn256 \
--load 01_cryodrgn256/weights.24.pkl # 0-based indexing
Use cryoDRGN's --multigpu
flag to enable parallelized training across all detected GPUs on the machine.
To select specific GPUs for cryoDRGN to run on, use the environmental variable CUDA_VISIBLE_DEVICES
, e.g.:
$ cryodrgn train_vae ... # Run on GPU 0
$ cryodrgn train_vae ... --multigpu # Run on all GPUs on the machine
$ CUDA_VISIBLE_DEVICES=0,3 cryodrgn train_vae ... --multigpu # Run on GPU 0,3
We recommend using --multigpu
for large images, e.g. D=256.
Note that GPU computation may not be the training bottleneck for smaller images (D=128).
In this case, --multigpu
may not speed up training (while taking up additional compute resources).
With --multigpu
, the batch size is multiplied by the number of available GPUs to better utilize GPU resources.
We note that GPU utilization may be further improved by increasing the batch size (e.g. -b 16
), however,
faster wall-clock time per epoch does not necessarily lead to faster model training since the training dynamics
are affected (fewer model updates per epoch with larger -b
),
and using --multigpu
may require increasing the total number of epochs.
Depending on the quality of the consensus reconstruction, image poses may contain errors.
Image poses may be locally refined using the --do-pose-sgd
flag, however, we recommend reaching out to the
developers for recommended training settings.
Once the model has finished training, the output directory will contain a configuration file config.yaml
,
neural network weights weights.pkl
, image poses (if performing pose sgd) pose.pkl
,
and the latent embeddings for each image z.pkl
.
The latent embeddings are provided in the same order as the input particles.
To analyze these results, use the cryodrgn analyze
command to visualize the latent space and generate structures.
cryodrgn analyze
will also provide a template jupyter notebook for further interactive visualization and analysis.
$ cryodrgn analyze -h
usage: cryodrgn analyze [-h] [--device DEVICE] [-o OUTDIR] [--skip-vol]
[--skip-umap] [--Apix APIX] [--flip] [--invert]
[-d DOWNSAMPLE] [--pc PC] [--ksample KSAMPLE]
workdir epoch
Visualize latent space and generate volumes
positional arguments:
workdir Directory with cryoDRGN results
epoch Epoch number N to analyze (0-based indexing,
corresponding to z.N.pkl, weights.N.pkl)
optional arguments:
-h, --help show this help message and exit
--device DEVICE Optionally specify CUDA device
-o OUTDIR, --outdir OUTDIR
Output directory for analysis results (default:
[workdir]/analyze.[epoch])
--skip-vol Skip generation of volumes
--skip-umap Skip running UMAP
Extra arguments for volume generation:
--Apix APIX Pixel size to add to .mrc header (default: 1 A/pix)
--flip Flip handedness of output volumes
--invert Invert contrast of output volumes
-d DOWNSAMPLE, --downsample DOWNSAMPLE
Downsample volumes to this box size (pixels)
--pc PC Number of principal component traversals to generate
(default: 2)
--ksample KSAMPLE Number of kmeans samples to generate (default: 20)
This script runs a series of standard analyses:
- PCA visualization of the latent embeddings
- UMAP visualization of the latent embeddings
- Generation of volumes. See note [1].
- Generation of trajectories along the first and second principal components of the latent embeddings
- Generation of template jupyter notebooks that may be used for further interactive analyses, visualization, and volume generation
Example usage to analyze results from the direction 01_cryodrgn256
containing results after 25 epochs of training:
$ cryodrgn analyze 01_cryodrgn256 24 --Apix 1.31 # 24 for 0-based indexing of epoch numbers
Notes:
[1] Volumes are generated after k-means clustering of the latent embeddings with k=20 by default.
Note that we use k-means clustering here not to identify clusters, but to segment the latent space and
generate structures from different regions of the latent space.
The number of structures that are generated may be increased with the option --ksample
.
[2] The cryodrgn analyze
command chains together a series of calls to cryodrgn eval_vol
and other scripts
that can be run separately for more flexibility.
These scripts are located in the analysis_scripts
directory within the source code.
[3] In particular, you may find it useful to perform filtering of particles separately from other analyses. This can
done using our interactive interface available from the command line: cryodrgn filter 01_cryodrgn256
.
[4] --Apix
only needs to be given if it is not present (or not accurate) in the CTF file that was used in training.
A simple way of generating additional volumes is to increase the number of k-means samples in cryodrgn analyze
by using the flag --ksample 100
(for 100 structures).
For additional flexibility, cryodrgn eval_vol
may be called directly:
$ cryodrgn eval_vol -h
usage: cryodrgn eval_vol [-h] -c PKL -o O [--prefix PREFIX] [-v]
[-z [Z [Z ...]]] [--z-start [Z_START [Z_START ...]]]
[--z-end [Z_END [Z_END ...]]] [-n N] [--zfile ZFILE]
[--Apix APIX] [--flip] [-d DOWNSAMPLE]
[--norm NORM NORM] [-D D] [--enc-layers QLAYERS]
[--enc-dim QDIM] [--zdim ZDIM]
[--encode-mode {conv,resid,mlp,tilt}]
[--dec-layers PLAYERS] [--dec-dim PDIM]
[--enc-mask ENC_MASK]
[--pe-type {geom_ft,geom_full,geom_lowf,geom_nohighf,linear_lowf,none}]
[--pe-dim PE_DIM] [--domain {hartley,fourier}]
[--l-extent L_EXTENT]
[--activation {relu,leaky_relu}]
weights
Evaluate the decoder at specified values of z
positional arguments:
weights Model weights
optional arguments:
-h, --help show this help message and exit
-c YAML, --config YAML CryoDRGN config.yaml file
-o O Output .mrc or directory
--prefix PREFIX Prefix when writing out multiple .mrc files (default: vol_)
-v, --verbose Increase verbosity
Specify z values:
-z [Z [Z ...]] Specify one z-value
--z-start [Z_START [Z_START ...]]
Specify a starting z-value
--z-end [Z_END [Z_END ...]]
Specify an ending z-value
-n N Number of structures between [z_start, z_end]
--zfile ZFILE Text file with z-values to evaluate
Volume arguments:
--Apix APIX Pixel size to add to .mrc header (default: 1 A/pix)
--flip Flip handedness of output volume
-d DOWNSAMPLE, --downsample DOWNSAMPLE
Downsample volumes to this box size (pixels)
Overwrite architecture hyperparameters in config.yaml:
--norm NORM NORM
-D D Box size
--enc-layers QLAYERS Number of hidden layers
--enc-dim QDIM Number of nodes in hidden layers
--zdim ZDIM Dimension of latent variable
--encode-mode {conv,resid,mlp,tilt}
Type of encoder network
--dec-layers PLAYERS Number of hidden layers
--dec-dim PDIM Number of nodes in hidden layers
--enc-mask ENC_MASK Circular mask radius for image encoder
--pe-type {geom_ft,geom_full,geom_lowf,geom_nohighf,linear_lowf,none}
Type of positional encoding
--pe-dim PE_DIM Num sinusoid features in positional encoding (default:
D/2)
--domain {hartley,fourier}
--l-extent L_EXTENT Coordinate lattice size
--activation {relu,leaky_relu}
Activation (default: relu)
Example usage:
To generate a volume at a single value of the latent variable:
$ cryodrgn eval_vol [YOUR_WORKDIR]/weights.pkl --config [YOUR_WORKDIR]/config.yaml -z ZVALUE -o reconstruct.mrc
The number of inputs for -z
must match the dimension of your latent variable.
Or to generate a trajectory of structures from a defined start and ending point,
use the --z-start
and --z-end
arugments:
$ cryodrgn eval_vol [YOUR_WORKDIR]/weights.pkl --config [YOUR_WORKDIR]/config.yaml -o [WORKDIR]/trajectory \
--z-start -3 --z-end 3 -n 20
This example generates 20 structures at evenly spaced values between z=[-3,3], assuming a 1-dimensional latent variable model.
Finally, a series of structures can be generated using values of z given in a file specified by the arugment --zfile
:
$ cryodrgn eval_vol [WORKDIR]/weights.pkl --config [WORKDIR]/config.yaml --zfile zvalues.txt -o [WORKDIR]/trajectory
The input to --zfile
is expected to be an array of dimension (N_volumes x zdim), loaded with np.loadtxt.
Two additional commands can be used in conjunction with cryodrgn eval_vol
to generate trajectories:
$ cryodrgn pc_traversal -h
$ cryodrgn graph_traversal -h
These scripts produce a text file of z values that can be input to cryodrgn eval_vol
to generate a series of
structures that can be visualized as a trajectory in ChimeraX (https://www.cgl.ucsf.edu/chimerax).
Documentation: https://ez-lab.gitbook.io/cryodrgn/cryodrgn-graph-traversal-for-making-long-trajectories
NEW in version 1.0: There are two additional tools cryodrgn analyze_landscape
and cryodrgn analyze_landscape_full
for more comprehensive and automated analyses of cryodrgn results.
Documentation: https://ez-lab.gitbook.io/cryodrgn/cryodrgn-conformational-landscape-analysis
To perform ab initio heterogeneous reconstruction, use cryodrgn abinit_het
.
The arguments are similar to cryodrgn train_vae
, but the --poses
argument is not required.
For homogeneous reconstruction, use cryodrgn abinit_homo
.
Documentation: https://ez-lab.gitbook.io/cryodrgn/cryodrgn2-ab-initio-reconstruction
Available in beta release starting in version 3.x. Documentation for getting started can be found in the user guide. Please reach out if you have any questions!
For a complete description of the method, see:
- CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks Ellen D. Zhong, Tristan Bepler, Bonnie Berger*, Joseph H Davis* Nature Methods 2021, https://doi.org/10.1038/s41592-020-01049-4 pdf
An earlier version of this work appeared at ICLR 2020:
- Reconstructing continuous distributions of protein structure from cryo-EM images Ellen D. Zhong, Tristan Bepler, Joseph H. Davis*, Bonnie Berger* ICLR 2020, Spotlight, https://arxiv.org/abs/1909.05215
CryoDRGN2's ab initio reconstruction algorithms were published at ICCV:
- CryoDRGN2: Ab Initio Neural Reconstruction of 3D Protein Structures From Real Cryo-EM Images Ellen D. Zhong, Adam Lerer, Joseph H Davis, and Bonnie Berger International Conference on Computer Vision (ICCV) 2021, paper
A protocols paper that describes the analysis of the EMPIAR-10076 assembling ribosome dataset:
- Uncovering structural ensembles from single particle cryo-EM data using cryoDRGN Laurel Kinman, Barrett Powell, Ellen D. Zhong*, Bonnie Berger*, Joseph H Davis* Nature Protocols 2023, https://doi.org/10.1038/s41596-022-00763-x
Heterogeneous subtomogram averaging:
- Deep reconstructing generative networks for visualizing dynamic biomolecules inside cells Rangan et al. bioRxiv 2023, https://www.biorxiv.org/content/10.1101/2023.08.18.553799v1
Please submit any bug reports, feature requests, or general usage feedback as a github issue or discussion.