Releases: mitmul/ssai-cnn
Releases · mitmul/ssai-cnn
v1.0.0
This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are published in this paper.
Requirements
- Python 3.5 (anaconda with python 3.5.1 is recommended)
- Chainer 1.5.0.2
- Cython 0.23.4
- NumPy 1.10.1
- tqdm
- OpenCV 3.0.0
- lmdb 0.87
- Boost 1.59.0
- Boost.NumPy (26aaa5b)
Build Libraries
OpenCV 3.0.0
$ wget https://github.com/Itseez/opencv/archive/3.0.0.zip
$ unzip 3.0.0.zip && rm -rf 3.0.0.zip
$ cd opencv-3.0.0 && mkdir build && cd build
$ bash $SSAI_HOME/shells/build_opencv.sh
$ make -j32 install
If some libraries are missing, do below before compiling 3.0.0.
$ sudo apt-get install -y libopencv-dev libtbb-dev
Boost 1.59. 0
$ wget http://downloads.sourceforge.net/project/boost/boost/1.59.0/boost_1_59_0.tar.bz2
$ tar xvf boost_1_59_0.tar.bz2 && rm -rf boost_1_59_0.tar.bz2
$ cd boost_1_59_0
$ ./bootstrap.sh
$ ./b2 -j32 install cxxflags="-I/home/ubuntu/anaconda3/include/python3.5m"
Boost.NumPy
$ git clone https://github.com/ndarray/Boost.NumPy.git
$ cd Boost.NumPy && mkdir build && cd build
$ cmake -DPYTHON_LIBRARY=$HOME/anaconda3/lib/libpython3.5m.so ../
$ make install
Build utils
$ cd $SSAI_HOME/scripts/utils
$ bash build.sh
Create Dataset
$ bash shells/download.sh
$ bash shells/create_dataset.sh
Dataset | Training | Validation | Test |
---|---|---|---|
mass_roads | 8580352 | 108416 | 379456 |
mass_roads_mini | 1060928 | 30976 | 77440 |
mass_buildings | 1060928 | 30976 | 77440 |
mass_merged | 1060928 | 30976 | 77440 |
Start Training
$ CHAINER_TYPE_CHECK=0 CHAINER_SEED=$1 \
nohup python scripts/train.py \
--seed 0 \
--gpu 0 \
--model models/MnihCNN_multi.py \
--train_ortho_db data/mass_merged/lmdb/train_sat \
--train_label_db data/mass_merged/lmdb/train_map \
--valid_ortho_db data/mass_merged/lmdb/valid_sat \
--valid_label_db data/mass_merged/lmdb/valid_map \
--dataset_size 1.0 \
> mnih_multi.log 2>&1 < /dev/null &
Prediction
python scripts/predict.py \
--model results/MnihCNN_multi_2016-02-03_03-34-58/MnihCNN_multi.py \
--param results/MnihCNN_multi_2016-02-03_03-34-58/epoch-400.model \
--test_sat_dir data/mass_merged/test/sat \
--channels 3 \
--offset 8 \
--gpu 0 &
Evaluation
$ PYTHONPATH=".":$PYTHONPATH python scripts/evaluate.py \
--map_dir data/mass_merged/test/map \
--result_dir results/MnihCNN_multi_2016-02-03_03-34-58/ma_prediction_400 \
--channel 3 \
--offset 8 \
--relax 3 \
--steps 1024
Results
Conventional methods
Model | Mass. Buildings | Mass. Roads | Mass.Roads-Mini |
---|---|---|---|
MnihCNN | 0.9150 | 0.8873 | N/A |
MnihCNN + CRF | 0.9211 | 0.8904 | N/A |
MnihCNN + Post-processing net | 0.9203 | 0.9006 | N/A |
Single-channel | 0.9503062 | 0.91730195 (epoch 120) | 0.89989258 |
Single-channel with MA | 0.953766 | 0.91903522 (epoch 120) | 0.902895 |
Multi-channel models (epoch = 400, step = 1024)
Model | Building-channel | Road-channel | Road-channel (fixed) |
---|---|---|---|
Multi-channel | 0.94346856 | 0.89379946 | 0.9033020025 |
Multi-channel with MA | 0.95231262 | 0.89971473 | 0.90982972 |
Multi-channel with CIS | 0.94417078 | 0.89415726 | 0.9039476538 |
Multi-channel with CIS + MA | 0.95280431 | 0.90071099 | 0.91108087 |
Test on urban areas (epoch = 400, step = 1024)
Model | Building-channel | Road-channel |
---|---|---|
Single-channel with MA | 0.962133 | 0.944748 |
Multi-channel with MA | 0.962797 | 0.947224 |
Multi-channel with CIS + MA | 0.964499 | 0.950465 |
x0_sigma for inverting feature maps
159.348674296
After prediction for single MA
$ bash shells/predict.sh
$ python scripts/integrate.py --result_dir results --epoch 200 --size 7,60
$ PYTHONPATH=".":$PYTHONPATH python scripts/evaluate.py --map_dir data/mass_merged/test/map --result_dir results/integrated_200 --channel 3 --offset 8 --relax 3 --steps 256
$ PYTHONPATH="." python scripts/eval_urban.py --result_dir results/integrated_200 --test_map_dir data/mass_merged/test/map --steps 256
Pre-trained models and Predicted results
Reference
If you use this code for your project, please cite this journal paper:
Shunta Saito, Takayoshi Yamashita, Yoshimitsu Aoki, "Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks", Journal of Imaging Science and Technology, Vol. 60, No. 1, pp. 10402-1-10402-9, 2015