Skip to content

Commit

Permalink
[AutoGPTQ] Add correct installation of GPTQ library + fix slow tests (
Browse files Browse the repository at this point in the history
huggingface#25713)

* add correct installation of GPTQ library

* update tests values
  • Loading branch information
younesbelkada authored Aug 24, 2023
1 parent 2febd50 commit 584eeb5
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 3 deletions.
2 changes: 1 addition & 1 deletion docker/transformers-all-latest-gpu/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
RUN python3 -m pip install --no-cache-dir bitsandbytes

# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

# Add einops for additional model testing
RUN python3 -m pip install --no-cache-dir einops
Expand Down
5 changes: 3 additions & 2 deletions tests/quantization/gptq/test_gptq.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,8 @@ class GPTQTest(unittest.TestCase):
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.")
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a professional photographer")
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the")
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,")

# this seems a little small considering that we are doing 4bit quant but we have a small model and ww don't quantize the embeddings
EXPECTED_RELATIVE_DIFFERENCE = 1.664253062
Expand Down Expand Up @@ -215,7 +216,7 @@ def test_change_loading_attributes(self):
self.assertEqual(self.quantized_model.config.quantization_config.disable_exllama, True)
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
tmpdirname, quantization_config=GPTQConfig(disable_exllama=False, bits=6), device_map={"": 0}
tmpdirname, quantization_config=GPTQConfig(disable_exllama=False, bits=4), device_map={"": 0}
)
self.assertEqual(quantized_model_from_saved.config.quantization_config.disable_exllama, False)
self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits)
Expand Down

0 comments on commit 584eeb5

Please sign in to comment.