Skip to content

Commit

Permalink
update readme for mindspore version of 2.3.1
Browse files Browse the repository at this point in the history
  • Loading branch information
WongGawa committed Nov 7, 2024
1 parent f88bbd2 commit e1e43de
Show file tree
Hide file tree
Showing 8 changed files with 108 additions and 66 deletions.
2 changes: 1 addition & 1 deletion GETTING_STARTED.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ to understand their behavior. Some common arguments are:
* Prepare your dataset in YOLO format. If trained with COCO (YOLO format), prepare it from [yolov5](https://github.com/ultralytics/yolov5) or the darknet.

<details onclose>

<summary><b>View More</b></summary>
```
coco/
{train,val}2017.txt
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ The following is the corresponding `mindyolo` versions and supported `mindspore`
| mindyolo | mindspore |
| :--: | :--: |
| master | master |
| 0.4 | 2.3.0 |
| 0.4 | 2.3.1/2.3.0 |
| 0.3 | 2.2.10 |
| 0.2 | 2.0 |
| 0.1 | 1.8 |
Expand Down
21 changes: 14 additions & 7 deletions configs/yolov3/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,17 +14,17 @@ We present some updates to YOLO! We made a bunch of little design changes to mak
<details open markdown>
<summary><b>performance tested on Ascend 910(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: |
| YOLOv3 | Darknet53 | 16 * 8 | 640 | MS COCO 2017 | 45.5 | 61.9M | [yaml](./yolov3.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-adfb27af.ckpt) |
| Model Name | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | Params | Recipe | Weight |
| :------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv3 | 8 | 16 | 640 | O2 | 3~5 mins | 45.5 | 61.9M | [yaml](./yolov3.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-adfb27af.ckpt) | |
</details>

<details open markdown>
<summary><b>performance tested on Ascend 910*(8p)</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | ms/step | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: | :---: |
| YOLOv3 | Darknet53 | 16 * 8 | 640 | MS COCO 2017 | 46.6 | 396.60 | 61.9M | [yaml](./yolov3.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-81895f09-910v2.ckpt) |
| Model Name | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | ms/step | Params | Recipe | Weight |
| :------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv3 | 8 | 16 | 640 | O2 | 3~5 mins | 46.6 | 396.60 | 61.9M | [yaml](./yolov3.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-81895f09-910v2.ckpt) |
</details>

<br>
Expand All @@ -38,9 +38,16 @@ We present some updates to YOLO! We made a bunch of little design changes to mak

Please refer to the [GETTING_STARTED](https://github.com/mindspore-lab/mindyolo/blob/master/GETTING_STARTED.md) in MindYOLO for details.

### Requirements

| mindspore | ascend driver | firmware | cann toolkit/kernel
| :-------: | :-----------: | :----------: | :----------------:
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1

### Training

<details open>
<details open markdown>
<summary><b>View More</b></summary>

#### - Pretraining Model

Expand Down
23 changes: 15 additions & 8 deletions configs/yolov4/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,18 +28,18 @@ AP (65.7% AP50) for the MS COCO dataset at a realtime speed of 65 FPS on Tesla V
<details open markdown>
<summary><b>performance tested on Ascend 910(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: |
| YOLOv4 | CSPDarknet53 | 16 * 8 | 608 | MS COCO 2017 | 45.4 | 27.6M | [yaml](./yolov4.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-50172f93.ckpt) |
| YOLOv4 | CSPDarknet53(silu) | 16 * 8 | 608 | MS COCO 2017 | 45.8 | 27.6M | [yaml](./yolov4-silu.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_silu_320e_map458-bdfc3205.ckpt) |
| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Params | | Model Name | Backbone | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | Params | Recipe | Weight |
| :--------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv4 | CSPDarknet53 | 8 | 16 | 608 | O2 | 3~5 mins | 45.4 | 27.6M | [yaml](./yolov4.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-50172f93.ckpt) |
| YOLOv4 | CSPDarknet53(silu) | 8 | 16 | 608 | O2 | 4~6 mins | 45.8 | 27.6M | [yaml](./yolov4-silu.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_silu_320e_map458-bdfc3205.ckpt) |
</details>

<details open markdown>
<summary><b>performance tested on Ascend 910*(8p)</b></summary>
<summary><b>performance tested on Ascend 910*(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | ms/step | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: | :---: |
| YOLOv4 | CSPDarknet53 | 16 * 8 | 608 | MS COCO 2017 | 46.1 | 337.25 | 27.6M | [yaml](./yolov4.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-64b8506f-910v2.ckpt) |
| Model Name | Backbone | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | ms/step | Params | Recipe | Weight |
| :--------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv4 | CSPDarknet53 | 8 | 16 | 608 | O2 | 3~5 mins | 46.1 | 337.25 | 27.6M | [yaml](./yolov4.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-64b8506f-910v2.ckpt) |
</details>

<br>
Expand All @@ -52,9 +52,16 @@ AP (65.7% AP50) for the MS COCO dataset at a realtime speed of 65 FPS on Tesla V

Please refer to the [GETTING_STARTED](https://github.com/mindspore-lab/mindyolo/blob/master/GETTING_STARTED.md) in MindYOLO for details.

### Requirements

| mindspore | ascend driver | firmware | cann toolkit/kernel
| :-------: | :-----------: | :----------: | :----------------:
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1

### Training

<details open>
<summary><b>View More</b></summary>

#### - Pretraining Model

Expand Down
31 changes: 19 additions & 12 deletions configs/yolov5/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,22 +11,22 @@ YOLOv5 is a family of object detection architectures and models pretrained on th
<details open markdown>
<summary><b>performance tested on Ascend 910(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: |
| YOLOv5 | N | 32 * 8 | 640 | MS COCO 2017 | 27.3 | 1.9M | [yaml](./yolov5n.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-9b16bd7b.ckpt) |
| YOLOv5 | S | 32 * 8 | 640 | MS COCO 2017 | 37.6 | 7.2M | [yaml](./yolov5s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-860bcf3b.ckpt) |
| YOLOv5 | M | 32 * 8 | 640 | MS COCO 2017 | 44.9 | 21.2M | [yaml](./yolov5m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5m_300e_mAP449-e7bbf695.ckpt) |
| YOLOv5 | L | 32 * 8 | 640 | MS COCO 2017 | 48.5 | 46.5M | [yaml](./yolov5l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5l_300e_mAP485-a28bce73.ckpt) |
| YOLOv5 | X | 16 * 8 | 640 | MS COCO 2017 | 50.5 | 86.7M | [yaml](./yolov5x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5x_300e_mAP505-97d36ddc.ckpt) |
| Model Name | Scale | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | Params | Recipe | Weight |
| :--------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv5 | N | 8 | 32 | 640 | O2 | 3~5 mins | 27.3 | 1.9M | [yaml](./yolov5n.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-9b16bd7b.ckpt) |
| YOLOv5 | S | 8 | 32 | 640 | O2 | 3~5 mins | 37.6 | 7.2M | [yaml](./yolov5s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-860bcf3b.ckpt) |
| YOLOv5 | M | 8 | 32 | 640 | O2 | 4~6 mins | 44.9 | 21.2M | [yaml](./yolov5m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5m_300e_mAP449-e7bbf695.ckpt) |
| YOLOv5 | L | 8 | 32 | 640 | O2 | 5~7 mins | 48.5 | 46.5M | [yaml](./yolov5l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5l_300e_mAP485-a28bce73.ckpt) |
| YOLOv5 | X | 8 | 16 | 640 | O2 | 8~10 mins | 50.5 | 86.7M | [yaml](./yolov5x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5x_300e_mAP505-97d36ddc.ckpt) |
</details>

<details open markdown>
<summary><b>performance tested on Ascend 910*(8p)</b></summary>
<summary><b>performance tested on Ascend 910*(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | ms/step | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: | :---: |
| YOLOv5 | N | 32 * 8 | 640 | MS COCO 2017 | 27.4 | 736.08 | 1.9M | [yaml](./yolov5n.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-bedf9a93-910v2.ckpt) |
| YOLOv5 | S | 32 * 8 | 640 | MS COCO 2017 | 37.6 | 787.34 | 7.2M | [yaml](./yolov5s.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-df4a45b6-910v2.ckpt) |
| Model Name | Scale | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | ms/step | Params | Recipe | Weight |
| :--------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv5 | N | 8 | 32 | 640 | O2 | 3~5 mins | 27.4 | 736.08 | 1.9M | [yaml](./yolov5n.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-bedf9a93-910v2.ckpt) |
| YOLOv5 | S | 8 | 32 | 640 | O2 | 3~5 mins | 37.6 | 787.34 | 7.2M | [yaml](./yolov5s.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-df4a45b6-910v2.ckpt) |
</details>

<br>
Expand All @@ -41,9 +41,16 @@ YOLOv5 is a family of object detection architectures and models pretrained on th

Please refer to the [GETTING_STARTED](https://github.com/mindspore-lab/mindyolo/blob/master/GETTING_STARTED.md) in MindYOLO for details.

### Requirements

| mindspore | ascend driver | firmware | cann toolkit/kernel
| :-------: | :-----------: | :----------: | :----------------:
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1

### Training

<details open>
<summary><b>View More</b></summary>

#### - Distributed Training

Expand Down
25 changes: 16 additions & 9 deletions configs/yolov7/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,19 +14,19 @@ YOLOv7 surpasses all known object detectors in both speed and accuracy in the ra
<details open markdown>
<summary><b>performance tested on Ascend 910(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: |
| YOLOv7 | Tiny | 16 * 8 | 640 | MS COCO 2017 | 37.5 | 6.2M | [yaml](./yolov7-tiny.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-d8972c94.ckpt) |
| YOLOv7 | L | 16 * 8 | 640 | MS COCO 2017 | 50.8 | 36.9M | [yaml](./yolov7.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7_300e_mAP508-734ac919.ckpt) |
| YOLOv7 | X | 12 * 8 | 640 | MS COCO 2017 | 52.4 | 71.3M | [yaml](./yolov7-x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-x_300e_mAP524-e2f58741.ckpt) |
| Model Name | Scale | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | Params | Recipe | Weight |
| :--------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv7 | Tiny | 8 | 16 | 640 | O2 | 4~6 mins | 37.5 | 6.2M | [yaml](./yolov7-tiny.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-d8972c94.ckpt) |
| YOLOv7 | L | 8 | 16 | 640 | O2 | 5~7 mins | 50.8 | 36.9M | [yaml](./yolov7.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7_300e_mAP508-734ac919.ckpt) |
| YOLOv7 | X | 8 | 12 | 640 | O2 | 7~9 mins | 52.4 | 71.3M | [yaml](./yolov7-x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-x_300e_mAP524-e2f58741.ckpt) |
</details>

<details open markdown>
<summary><b>performance tested on Ascend 910*(8p)</b></summary>
<summary><b>performance tested on Ascend 910*(8p) with graph mode</b></summary>

| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | ms/step | Params | Recipe | Download |
|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: | :---: |
| YOLOv7 | Tiny | 16 * 8 | 640 | MS COCO 2017 | 37.5 | 496.21 | 6.2M | [yaml](./yolov7-tiny.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-1d2ddf4b-910v2.ckpt) |
| Model Name | Scale | Cards | BatchSize | ImageSize | jit_level | graph compile | Box mAP (%) | ms/step | Params | Recipe | Weight |
| :--------: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YOLOv7 | Tiny | 8 | 16 | 640 | O2 | 4~6 mins | 37.5 | 496.21 | 6.2M | [yaml](./yolov7-tiny.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-1d2ddf4b-910v2.ckpt) |
</details>

<br>
Expand All @@ -42,9 +42,16 @@ YOLOv7 surpasses all known object detectors in both speed and accuracy in the ra

Please refer to the [GETTING_STARTED](https://github.com/mindspore-lab/mindyolo/blob/master/GETTING_STARTED.md) in MindYOLO for details.

### Requirements

| mindspore | ascend driver | firmware | cann toolkit/kernel
| :-------: | :-----------: | :----------: | :----------------:
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1

### Training

<details open>
<summary><b>View More</b></summary>

#### - Distributed Training

Expand Down
Loading

0 comments on commit e1e43de

Please sign in to comment.