[torchlib] Fix aten::diagonal #7502
5 errors, 45 fail, 2 739 skipped, 12 594 pass in 1h 48m 40s
Annotations
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0963_test_resize_upsample_scales_cubic (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py311-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_resize_upsample_scales_cubic' (e=No module named 'tests.onnx_backend_test_code.test_resize_upsample_scales_cubic') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_resize_upsample_scales_cubic.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_resize_upsample_scales_cubic.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset19
@script()
def bck_test_resize_upsample_scales_cubic(X: FLOAT[1,1,4,4], scales: FLOAT[4]) -> (FLOAT[1,1,8,8]):
Y = opset19.Resize(X, None, scales, mode='cubic')
return Y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_resize_upsample_scales_cubic'
The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_resize_upsample_scales_cubic' (e=No module named 'tests.onnx_backend_test_code.test_resize_upsample_scales_cubic') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_resize_upsample_scales_cubic.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_resize_upsample_scales_cubic.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset19
E
E @script()
E def bck_test_resize_upsample_scales_cubic(X: FLOAT[1,1,4,4], scales: FLOAT[4]) -> (FLOAT[1,1,8,8]):
E Y = opset19.Resize(X, None, scales, mode='cubic')
E return Y
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_1120_test_slice_end_out_of_bounds (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py311-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_slice_end_out_of_bounds' (e=No module named 'tests.onnx_backend_test_code.test_slice_end_out_of_bounds') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_slice_end_out_of_bounds.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_slice_end_out_of_bounds.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT, INT64
from onnxscript.onnx_opset import opset13
@script()
def bck_test_slice_end_out_of_bounds(x: FLOAT[20,10,5], starts: INT64[1], ends: INT64[1], axes: INT64[1], steps: INT64[1]) -> (FLOAT[20,9,5]):
y = opset13.Slice(x, starts, ends, axes, steps)
return y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_slice_end_out_of_bounds'
The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_slice_end_out_of_bounds' (e=No module named 'tests.onnx_backend_test_code.test_slice_end_out_of_bounds') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_slice_end_out_of_bounds.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_slice_end_out_of_bounds.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT, INT64
E from onnxscript.onnx_opset import opset13
E
E @script()
E def bck_test_slice_end_out_of_bounds(x: FLOAT[20,10,5], starts: INT64[1], ends: INT64[1], axes: INT64[1], steps: INT64[1]) -> (FLOAT[20,9,5]):
E y = opset13.Slice(x, starts, ends, axes, steps)
E return y
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0400_test_gemm_all_attributes (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_gemm_all_attributes' (e=No module named 'tests.onnx_backend_test_code.test_gemm_all_attributes') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_all_attributes.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_all_attributes.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset13
@script()
def bck_test_gemm_all_attributes(a: FLOAT[4,3], b: FLOAT[5,4], c: FLOAT[1,5]) -> (FLOAT[3,5]):
y = opset13.Gemm(a, b, c, alpha=0.25, beta=0.3499999940395355, transA=1, transB=1)
return y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_gemm_all_attributes'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_gemm_all_attributes' (e=No module named 'tests.onnx_backend_test_code.test_gemm_all_attributes') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_all_attributes.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_all_attributes.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset13
E
E @script()
E def bck_test_gemm_all_attributes(a: FLOAT[4,3], b: FLOAT[5,4], c: FLOAT[1,5]) -> (FLOAT[3,5]):
E y = opset13.Gemm(a, b, c, alpha=0.25, beta=0.3499999940395355, transA=1, transB=1)
E return y
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0013_test_affine_grid_2d_align_corners (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py311-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_affine_grid_2d_align_corners' (e=No module named 'tests.onnx_backend_test_code.test_affine_grid_2d_align_corners') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_affine_grid_2d_align_corners.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_affine_grid_2d_align_corners.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT, INT64
from onnxscript.onnx_opset import opset20
@script()
def bck_test_affine_grid_2d_align_corners(theta: FLOAT[2,2,3], size: INT64[4]) -> (FLOAT[2,5,6,2]):
grid = opset20.AffineGrid(theta, size, align_corners=1)
return grid
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_affine_grid_2d_align_corners'
The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_affine_grid_2d_align_corners' (e=No module named 'tests.onnx_backend_test_code.test_affine_grid_2d_align_corners') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_affine_grid_2d_align_corners.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_affine_grid_2d_align_corners.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT, INT64
E from onnxscript.onnx_opset import opset20
E
E @script()
E def bck_test_affine_grid_2d_align_corners(theta: FLOAT[2,2,3], size: INT64[4]) -> (FLOAT[2,5,6,2]):
E grid = opset20.AffineGrid(theta, size, align_corners=1)
E return grid
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0404_test_gemm_default_no_bias (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_gemm_default_no_bias' (e=No module named 'tests.onnx_backend_test_code.test_gemm_default_no_bias') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_default_no_bias.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_default_no_bias.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset13
@script()
def bck_test_gemm_default_no_bias(a: FLOAT[2,10], b: FLOAT[10,3]) -> (FLOAT[2,3]):
y = opset13.Gemm(a, b)
return y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_gemm_default_no_bias'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_gemm_default_no_bias' (e=No module named 'tests.onnx_backend_test_code.test_gemm_default_no_bias') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_default_no_bias.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_gemm_default_no_bias.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset13
E
E @script()
E def bck_test_gemm_default_no_bias(a: FLOAT[2,10], b: FLOAT[10,3]) -> (FLOAT[2,3]):
E y = opset13.Gemm(a, b)
E return y
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0805_test_reduce_l1_do_not_keepdims_random (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_l1_do_not_keepdims_random' (e=No module named 'tests.onnx_backend_test_code.test_reduce_l1_do_not_keepdims_random') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_l1_do_not_keepdims_random.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_l1_do_not_keepdims_random.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT, INT64
from onnxscript.onnx_opset import opset18
@script()
def bck_test_reduce_l1_do_not_keepdims_random(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,2]):
reduced = opset18.ReduceL1(data, axes, keepdims=0)
return reduced
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_reduce_l1_do_not_keepdims_random'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_l1_do_not_keepdims_random' (e=No module named 'tests.onnx_backend_test_code.test_reduce_l1_do_not_keepdims_random') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_l1_do_not_keepdims_random.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_l1_do_not_keepdims_random.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT, INT64
E from onnxscript.onnx_opset import opset18
E
E @script()
E def bck_test_reduce_l1_do_not_keepdims_random(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,2]):
E reduced = opset18.ReduceL1(data, axes, keepdims=0)
E return reduced
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0867_test_reduce_max_do_not_keepdims_random (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_max_do_not_keepdims_random' (e=No module named 'tests.onnx_backend_test_code.test_reduce_max_do_not_keepdims_random') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_max_do_not_keepdims_random.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_max_do_not_keepdims_random.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT, INT64
from onnxscript.onnx_opset import opset18
@script()
def bck_test_reduce_max_do_not_keepdims_random(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,2]):
reduced = opset18.ReduceMax(data, axes, keepdims=0)
return reduced
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_reduce_max_do_not_keepdims_random'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_max_do_not_keepdims_random' (e=No module named 'tests.onnx_backend_test_code.test_reduce_max_do_not_keepdims_random') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_max_do_not_keepdims_random.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_max_do_not_keepdims_random.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT, INT64
E from onnxscript.onnx_opset import opset18
E
E @script()
E def bck_test_reduce_max_do_not_keepdims_random(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,2]):
E reduced = opset18.ReduceMax(data, axes, keepdims=0)
E return reduced
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0517_test_layer_normalization_3d_axis_negative_2_epsilon (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_layer_normalization_3d_axis_negative_2_epsilon' (e=No module named 'tests.onnx_backend_test_code.test_layer_normalization_3d_axis_negative_2_epsilon') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_layer_normalization_3d_axis_negative_2_epsilon.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_layer_normalization_3d_axis_negative_2_epsilon.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset17
@script()
def bck_test_layer_normalization_3d_axis_negative_2_epsilon(X: FLOAT[2,3,5], W: FLOAT[3,5], B: FLOAT[3,5]) -> (FLOAT[2,3,5], FLOAT[2,1,1], FLOAT[2,1,1]):
Y, Mean, InvStdDev = opset17.LayerNormalization(X, W, B, axis=-2, epsilon=0.10000000149011612)
return Y, Mean, InvStdDev
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_layer_normalization_3d_axis_negative_2_epsilon'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_layer_normalization_3d_axis_negative_2_epsilon' (e=No module named 'tests.onnx_backend_test_code.test_layer_normalization_3d_axis_negative_2_epsilon') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_layer_normalization_3d_axis_negative_2_epsilon.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_layer_normalization_3d_axis_negative_2_epsilon.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset17
E
E @script()
E def bck_test_layer_normalization_3d_axis_negative_2_epsilon(X: FLOAT[2,3,5], W: FLOAT[3,5], B: FLOAT[3,5]) -> (FLOAT[2,3,5], FLOAT[2,1,1], FLOAT[2,1,1]):
E Y, Mean, InvStdDev = opset17.LayerNormalization(X, W, B, axis=-2, epsilon=0.10000000149011612)
E return Y, Mean, InvStdDev
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0605_test_matmul_4d (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py311-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_matmul_4d' (e=No module named 'tests.onnx_backend_test_code.test_matmul_4d') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_matmul_4d.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_matmul_4d.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset13
@script()
def bck_test_matmul_4d(a: FLOAT[1,2,3,4], b: FLOAT[1,2,4,3]) -> (FLOAT[1,2,3,3]):
c = opset13.MatMul(a, b)
return c
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_matmul_4d'
The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_matmul_4d' (e=No module named 'tests.onnx_backend_test_code.test_matmul_4d') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_matmul_4d.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_matmul_4d.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset13
E
E @script()
E def bck_test_matmul_4d(a: FLOAT[1,2,3,4], b: FLOAT[1,2,4,3]) -> (FLOAT[1,2,3,3]):
E c = opset13.MatMul(a, b)
E return c
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0082_test_averagepool_2d_precomputed_pads (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_averagepool_2d_precomputed_pads' (e=No module named 'tests.onnx_backend_test_code.test_averagepool_2d_precomputed_pads') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_averagepool_2d_precomputed_pads.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_averagepool_2d_precomputed_pads.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset19
@script()
def bck_test_averagepool_2d_precomputed_pads(x: FLOAT[1,1,5,5]) -> (FLOAT[1,1,5,5]):
y = opset19.AveragePool(x, kernel_shape=[5, 5], pads=[2, 2, 2, 2])
return y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_averagepool_2d_precomputed_pads'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_averagepool_2d_precomputed_pads' (e=No module named 'tests.onnx_backend_test_code.test_averagepool_2d_precomputed_pads') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_averagepool_2d_precomputed_pads.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_averagepool_2d_precomputed_pads.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset19
E
E @script()
E def bck_test_averagepool_2d_precomputed_pads(x: FLOAT[1,1,5,5]) -> (FLOAT[1,1,5,5]):
E y = opset19.AveragePool(x, kernel_shape=[5, 5], pads=[2, 2, 2, 2])
E return y
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_1107_test_sign (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py39-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_sign' (e=No module named 'tests.onnx_backend_test_code.test_sign') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_sign.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_sign.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset13
@script()
def bck_test_sign(x: FLOAT[11]) -> (FLOAT[11]):
y = opset13.Sign(x)
return y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\importlib\__init__.py:127: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_sign'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_sign' (e=No module named 'tests.onnx_backend_test_code.test_sign') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_sign.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_sign.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset13
E
E @script()
E def bck_test_sign(x: FLOAT[11]) -> (FLOAT[11]):
E y = opset13.Sign(x)
E return y
Check warning on line 0 in onnxscript.backend.onnx_export_test.TestOnnxBackEnd
github-actions / Test Results
1 out of 3 runs failed: test_export2python_produces_correct_onnx_script_model_0459_test_hardmax_example (onnxscript.backend.onnx_export_test.TestOnnxBackEnd)
artifacts/Test Results (py310-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Unable to import 'tests.onnx_backend_test_code.test_hardmax_example' (e=No module named 'tests.onnx_backend_test_code.test_hardmax_example') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_example.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_example.py', current folder: D:\a\onnxscript\onnxscript
---- CONTENT --
import numpy
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script, external_tensor
from onnxscript.values import Opset
from onnxscript.onnx_types import FLOAT
from onnxscript.onnx_opset import opset13
@script()
def bck_test_hardmax_example(x: FLOAT[4,4]) -> (FLOAT[4,4]):
y = opset13.Hardmax(x)
return y
onnxscript\backend\onnx_export_test.py:133: in extract_functions
mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.10.11\x64\lib\importlib\__init__.py:126: in import_module
return _bootstrap._gcd_import(name[level:], package, level)
E ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_hardmax_example'
The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:267: in test_export2python_produces_correct_onnx_script_model
functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:135: in extract_functions
raise AssertionError(
E AssertionError: Unable to import 'tests.onnx_backend_test_code.test_hardmax_example' (e=No module named 'tests.onnx_backend_test_code.test_hardmax_example') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_example.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_example.py', current folder: D:\a\onnxscript\onnxscript
E ---- CONTENT --
E import numpy
E from onnx import TensorProto
E from onnx.helper import make_tensor
E from onnxscript import script, external_tensor
E from onnxscript.values import Opset
E from onnxscript.onnx_types import FLOAT
E from onnxscript.onnx_opset import opset13
E
E @script()
E def bck_test_hardmax_example(x: FLOAT[4,4]) -> (FLOAT[4,4]):
E y = opset13.Hardmax(x)
E return y
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__ops_aten_embedding_bag_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 30s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 28s]
Raw output
AssertionError: Output 0 mismatch
AssertionError: Output 0 mismatch
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 1 / 15 (6.7%)
E Greatest absolute difference: 0.0546875 at index (2, 0) (up to 0.01 allowed)
E Greatest relative difference: 0.0124359130859375 at index (2, 0) (up to 0.01 allowed)
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
raise AssertionError(f"Output {j} mismatch") from e
E AssertionError: Output 0 mismatch
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 1 / 15 (6.7%)
E Greatest absolute difference: 0.0546875 at index (2, 0) (up to 0.01 allowed)
E Greatest relative difference: 0.0124359130859375 at index (2, 0) (up to 0.01 allowed)
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
raise AssertionError(f"Output {j} mismatch") from e
E AssertionError: Output 0 mismatch
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
All 15 runs failed: test_output_match_opinfo__diagonal_cpu_int32 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-ubuntu-latest)/pytest.xml [took 6s]
artifacts/Test Results (py311-experimental-torchlib-tracing-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-macos-latest)/pytest.xml [took 5s]
artifacts/Test Results (py311-onnx-weekly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-onnx-weekly-ubuntu-latest)/pytest.xml [took 8s]
artifacts/Test Results (py311-onnx-weekly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-ort-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-ort-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 15s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py39-macos-latest)/pytest.xml [took 3s]
Raw output
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = -2> (input0)
}
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = -2> (input0)
E }
Check warning on line 0 in tests.function_libs.torch_lib.quantization_test.QuantizedModelExportTest
github-actions / Test Results
4 out of 12 runs failed: test_simple_quantized_model (tests.function_libs.torch_lib.quantization_test.QuantizedModelExportTest)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 3s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 2s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
onnx.onnx_cpp2py_export.checker.ValidationError: Required attribute 'to' is missing.
==> Context: Bad node spec for node. Name: Cast_18 OpType: Cast
tests/function_libs/torch_lib/quantization_test.py:50: in test_simple_quantized_model
onnx.checker.check_model(program.model_proto, full_check=True)
.nox/test_torch_nightly/lib/python3.11/site-packages/onnx/checker.py:179: in check_model
C.check_model(
E onnx.onnx_cpp2py_export.checker.ValidationError: Required attribute 'to' is missing.
E
E ==> Context: Bad node spec for node. Name: Cast_18 OpType: Cast
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
2 out of 15 runs failed: test_output_match_opinfo__matmul_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!
Mismatched elements: 1 / 25 (4.0%)
Greatest absolute difference: 0.03515625 at index (4, 4) (up to 0.02 allowed)
Greatest relative difference: 0.0084075927734375 at index (4, 4) (up to 0.002 allowed)
AssertionError: Tensor-likes are not close!
Mismatched elements: 2 / 250 (0.8%)
Greatest absolute difference: 0.029296875 at index (0, 1, 7) (up to 0.02 allowed)
Greatest relative difference: 0.019683837890625 at index (4, 0, 7) (up to 0.002 allowed)
tests\function_libs\torch_lib\ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 1 / 25 (4.0%)
E Greatest absolute difference: 0.03515625 at index (4, 4) (up to 0.02 allowed)
E Greatest relative difference: 0.0084075927734375 at index (4, 4) (up to 0.002 allowed)
tests\function_libs\torch_lib\ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 2 / 250 (0.8%)
E Greatest absolute difference: 0.029296875 at index (0, 1, 7) (up to 0.02 allowed)
E Greatest relative difference: 0.019683837890625 at index (4, 0, 7) (up to 0.002 allowed)
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__var_mean_unbiased_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Output 0 mismatch
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Scalars are not close!
E
E Expected 25.765625 but got 25.796875.
E Absolute difference: 0.03125 (up to 1e-05 allowed)
E Relative difference: 0.001212856276531231 (up to 0.001 allowed)
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
raise AssertionError(f"Output {j} mismatch") from e
E AssertionError: Output 0 mismatch
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__var_mean_correction_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Output 0 mismatch
AssertionError: Output 0 mismatch
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 2 / 25 (8.0%)
E Greatest absolute difference: 0.03125 at index (2, 3) (up to 1e-05 allowed)
E Greatest relative difference: 0.0017795562744140625 at index (2, 3) (up to 0.001 allowed)
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
raise AssertionError(f"Output {j} mismatch") from e
E AssertionError: Output 0 mismatch
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 2 / 25 (8.0%)
E Greatest absolute difference: 0.0625 at index (2, 2) (up to 1e-05 allowed)
E Greatest relative difference: 0.0014429092407226562 at index (2, 3) (up to 0.001 allowed)
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
raise AssertionError(f"Output {j} mismatch") from e
E AssertionError: Output 0 mismatch
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
All 15 runs failed: test_output_match_opinfo__diagonal_bool_cpu_bool (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-ubuntu-latest)/pytest.xml [took 7s]
artifacts/Test Results (py311-experimental-torchlib-tracing-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-onnx-weekly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-onnx-weekly-ubuntu-latest)/pytest.xml [took 7s]
artifacts/Test Results (py311-onnx-weekly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-ort-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-ort-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 14s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py39-macos-latest)/pytest.xml [took 3s]
Raw output
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = -2> (input0)
}
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2629: in aten_diagonal_bool
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = -2> (input0)
E }
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
All 15 runs failed: test_output_match_opinfo__diagonal_cpu_float32 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-ubuntu-latest)/pytest.xml [took 7s]
artifacts/Test Results (py311-experimental-torchlib-tracing-windows-latest)/pytest.xml [took 10s]
artifacts/Test Results (py311-macos-latest)/pytest.xml [took 5s]
artifacts/Test Results (py311-onnx-weekly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-onnx-weekly-ubuntu-latest)/pytest.xml [took 6s]
artifacts/Test Results (py311-onnx-weekly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-ort-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-ort-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 14s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py39-macos-latest)/pytest.xml [took 3s]
Raw output
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = -2> (input0)
}
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = -2> (input0)
E }
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__addmv_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!
Mismatched elements: 1 / 5 (20.0%)
Greatest absolute difference: 0.046875 at index (2,) (up to 0.01 allowed)
Greatest relative difference: 0.002635955810546875 at index (2,) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!
Mismatched elements: 1 / 5 (20.0%)
Greatest absolute difference: 0.0234375 at index (2,) (up to 0.01 allowed)
Greatest relative difference: 0.0024318695068359375 at index (2,) (up to 0.001 allowed)
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 1 / 5 (20.0%)
E Greatest absolute difference: 0.046875 at index (2,) (up to 0.01 allowed)
E Greatest relative difference: 0.002635955810546875 at index (2,) (up to 0.001 allowed)
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 1 / 5 (20.0%)
E Greatest absolute difference: 0.0234375 at index (2,) (up to 0.01 allowed)
E Greatest relative difference: 0.0024318695068359375 at index (2,) (up to 0.001 allowed)
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__floor_divide_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
Failed: Unexpected success
Unexpected success
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__index_put_bool_cpu_int32 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not equal!
Mismatched elements: 9 / 25 (36.0%)
Greatest absolute difference: 15 at index (1, 0)
Greatest relative difference: 6.0 at index (3, 4)
tests/function_libs/torch_lib/ops_test.py:252: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not equal!
E
E Mismatched elements: 9 / 25 (36.0%)
E Greatest absolute difference: 15 at index (1, 0)
E Greatest relative difference: 6.0 at index (3, 4)
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
All 15 runs failed: test_output_match_opinfo__diagonal_cpu_int64 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-experimental-torchlib-tracing-ubuntu-latest)/pytest.xml [took 6s]
artifacts/Test Results (py311-experimental-torchlib-tracing-windows-latest)/pytest.xml [took 8s]
artifacts/Test Results (py311-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py311-onnx-weekly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-onnx-weekly-ubuntu-latest)/pytest.xml [took 7s]
artifacts/Test Results (py311-onnx-weekly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-ort-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py311-ort-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 12s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 9s]
artifacts/Test Results (py39-macos-latest)/pytest.xml [took 3s]
Raw output
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 0> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 1> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = 2> (input0)
}
onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
<
ir_version: 4,
opset_import: ["" : 9]
>
node_graph (float input0) => ( output0) {
output0 = EyeLike <k: int = -2> (input0)
}
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 0> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 1> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = 2> (input0)
E }
onnxscript/evaluator.py:478: in _call_ort
session = ort.InferenceSession(
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:419: in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
.nox/test_onnx_weekly/lib/python3.11/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py:474: in _create_inference_session
sess = C.InferenceSession(session_options, self._model_bytes, False, self._read_config_from_model)
E onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Node () Op (EyeLike) [ShapeInferenceError] Input tensor must be 2-dimensional
The above exception was the direct cause of the following exception:
tests/function_libs/torch_lib/ops_test.py:215: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
tests/function_libs/torch_lib/ops_test_common.py:601: in executor
return function(*args, **kwargs)
onnxscript/values.py:583: in __call__
return self.func(*args, **kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:2556: in aten_diagonal
mask = op.EyeLike(op.ConstantOfShape(mask_shape), k=offset)
onnxscript/onnx_opset/_impl/opset9.py:438: in EyeLike
return op(*self._prepare_inputs(schema, input), dtype=dtype, k=k)
onnxscript/values.py:301: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:512: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:482: in _call_ort
raise EagerModeError(
E onnxscript.evaluator.EagerModeError: Unable to create onnxruntime InferenceSession for executing .EyeLike op with onnx model
E <
E ir_version: 4,
E opset_import: ["" : 9]
E >
E node_graph (float input0) => ( output0) {
E output0 = EyeLike <k: int = -2> (input0)
E }
Check warning on line 0 in tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU
github-actions / Test Results
4 out of 15 runs failed: test_output_match_opinfo__div_mode_floor_rounding_cpu_float16 (tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py311-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py311-torch-nightly-windows-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py312-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
Failed: Unexpected success
Unexpected success