Fix aten_copy
dtype | fix(torchlib) (#1164)
#488
53 fail, 2 792 skipped, 8 342 pass in 1h 13m 17s
Annotations
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16 input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16 input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16 input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16 input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32 input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32 input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32 input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32 input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_all_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (all_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_all_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (all_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 7s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_any_dim <dim>(self) => (result_1)
{
cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
result = Cast <to: int = 9> (self)
}, else_branch: graph = elseGraph_5 () => ( result_0) {
self_bool = Cast <to: int = 9> (self)
self_int = Cast <to: int = 7> (self_bool)
dim = Constant <value_int: int = @dim> ()
tmp = Constant <value_ints: ints = [-1]> ()
dims = Reshape (dim, tmp)
any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
result_0 = Cast <to: int = 9> (any_true)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,5] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n1): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_any_dim <dim>(self) => (result_1)
E {
E cond = pkg.onnxscript.torch_lib.common.IsScalar (self)
E result_1 = If (cond) <then_branch: graph = thenGraph_5 () => ( result) {
E result = Cast <to: int = 9> (self)
E }, else_branch: graph = elseGraph_5 () => ( result_0) {
E self_bool = Cast <to: int = 9> (self)
E self_int = Cast <to: int = 7> (self_bool)
E dim = Constant <value_int: int = @dim> ()
E tmp = Constant <value_ints: ints = [-1]> ()
E dims = Reshape (dim, tmp)
E any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E result_0 = Cast <to: int = 9> (any_true)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 14s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 12s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 13s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 8s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 15s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 11s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 12s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 4s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 13s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:355: in aten_all_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 8s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:584: in executor
return function(*args, **kwargs)
onnxscript\values.py:525: in __call__
return evaluator.default().eval_function(self, args, kwargs)
onnxscript\evaluator.py:309: in eval_function
result = function.function(*adapted_args, **adapted_kwargs)
onnxscript\function_libs\torch_lib\ops\core.py:478: in aten_any_dim
dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript\onnx_opset\_impl\opset14.py:909: in Reshape
return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript\values.py:303: in __call__
return evaluator.default().eval(schema, args, kwargs)
onnxscript\evaluator.py:196: in eval
outputs = self._eval(schema, inputs, attributes, closure)
onnxscript\evaluator.py:510: in _eval
return _call_ort(schema, inputs, attributes, closure)
onnxscript\evaluator.py:471: in _call_ort
model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript\evaluator.py:411: in _prepare_model_and_inputs_for_eager
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:411: in <listcomp>
args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript\evaluator.py:377: in _onnxscript_to_numpy_value
raise TypeError(
E TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
github-actions / Test Results
3 out of 9 runs failed: test_output_match_opinfo__ops_aten__softmax_half_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
Failed: Unexpected success
Unexpected success
github-actions / Test Results
All 3 runs failed: test_output_match_opinfo__nn_functional_scaled_dot_product_attention_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 4s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[4,3,8] input_0, float16[4,6,8] input_1, float16[4,6,8] input_2) => (float16[4,3,8] _val_5)
<float16 _val_3, float[3,6] _val_4>
{
_val_3 = pkg.onnxscript.torch_lib._attention_scale (input_0)
_val_4 = pkg.onnxscript.torch_lib._causal_attention_mask (input_0, input_1)
_val_5 = pkg.onnxscript.torch_lib._aten_scaled_dot_product_attention_float_mask_onnx <dropout_p: float = 0> (input_0, input_1, input_2, _val_4, _val_3)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_attention_scale (query) => (scale)
{
tmp = Shape (query)
int64_m1 = Constant <value: tensor = int64 int64_m1 {-1}> ()
tmp_subscripted = Gather <axis: int = 0> (tmp, int64_m1)
embedding_size = CastLike (tmp_subscripted, query)
const = Constant <value: tensor = float const {1}> ()
tmp_0 = Sqrt (embedding_size)
const_cast = CastLike (const, tmp_0)
scale = Div (const_cast, tmp_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_causal_attention_mask (query, key) => (attn_mask_10)
{
tmp = Shape (query)
int64_0_1d = Constant <value: tensor = int64[1] int64_0_1d {0}> ()
int64_1_1d = Constant <value: tensor = int64[1] int64_1_1d {1}> ()
int64_m2_1d = Constant <value: tensor = int64[1] int64_m2_1d {-2}> ()
int64_m1_1d = Constant <value: tensor = int64[1] int64_m1_1d {-1}> ()
target_length = Slice (tmp, int64_m2_1d, int64_m1_1d, int64_0_1d, int64_1_1d)
tmp_0 = Shape (key)
int64_0_1d_1 = Constant <value: tensor = int64[1] int64_0_1d_1 {0}> ()
int64_1_1d_2 = Constant <value: tensor = int64[1] int64_1_1d_2 {1}> ()
int64_m2_1d_3 = Constant <value: tensor = int64[1] int64_m2_1d_3 {-2}> ()
int64_m1_1d_4 = Constant <value: tensor = int64[1] int64_m1_1d_4 {-1}> ()
source_length = Slice (tmp_0, int64_m2_1d_3, int64_m1_1d_4, int64_0_1d_1, int64_1_1d_2)
size = Concat <axis: int = 0> (target_length, source_length)
const = Constant <value: tensor = float const {1}> ()
attn_mask = Expand (const, size)
attn_mask_5 = Trilu <upper: int = 0> (attn_mask)
const_6 = Constant <value: tensor = float const_6 {0}> ()
const_6_cast = CastLike (const_6, attn_mask_5)
tmp_7 = Equal (attn_mask_5, const_6_cast)
tmp_8 = Constant <value_float: float = -inf> ()
const_9 = Constant <value: tensor = float const_9 {0}> ()
const_9_cast = CastLike (const_9, tmp_8)
attn_mask_10 = Where (tmp_7, tmp_8, const_9_cast)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_aten_scaled_dot_product_attention_float_mask_onnx <dropout_p>(query, key, value, attn_mask, scale) => (return_val)
{
key_shape = Shape (key)
int64_0_1d = Constant <value: tensor = int64[1] int64_0_1d {0}> ()
int64_1_1d = Constant <value: tensor = int64[1] int64_1_1d {1}> ()
int64_m1_1d = Constant <value: tensor = int64[1] int64_m1_1d {-1}> ()
int64_9223372036854775807_1d = Constant <value: tensor = int64[1] int64_9223372036854775807_1d {9223372036854775807}> ()
key_last_dim = Slice (key_shape, int64_m1_1d, int64_9223372036854775807_1d, int64_0_1d, int64_1_1d)
int64_0_1d_0 = Constant <value: tensor = int64[1] int64_0_1d_0 {0}> ()
int64_1_1d_1 = Constant <value: tensor = int64[1] int64_1_1d_1 {1}> ()
int64_m2_1d = Constant <value: tensor = int64[1] int64_m2_1d {-2}> ()
int64_m1_1d_2 = Constant <value: tensor = int64[1] int64_m1_1d_2 {-1}> ()
key_second_last_dim = Slice (key_shape, int64_m2_1d, int64_m1_1d_2, int64_0_1d_0, int64_1_1d_1)
int64_0_1d_3 = Constant <value: tensor = int64[1] int64_0_1d_3 {0}> ()
int64_1_1d_4 = Constant <value: tensor = int64[1] int64_1_1d_4 {1}> ()
int64_m2_1d_5 = Constant <value: tensor = int64[1] int64_m2_1d_5 {-2}> ()
key_first_dims = Slice (key_shape, int64_0_1d_3, int64_m2_1d_5, int64_0_1d_3, int64_1_1d_4)
tmp = Constant <value_ints: ints = [-1]> ()
key_squeezed_shape = Concat <axis: int = 0> (tmp, key_second_last_dim, key_last_dim)
key_squeezed = Reshape (key, key_squeezed_shape)
key_squeezed_transposed = Transpose <perm: ints = [0, 2, 1]> (key_squeezed)
key_transposed_shape = Concat <axis: int = 0> (key_first_dims, key_last_dim, key_second_last_dim)
key_transposed = Reshape (key_squeezed_transposed, key_transposed_shape)
tmp_6 = Sqrt (scale)
query_scaled = Mul (query, tmp_6)
tmp_7 = Sqrt (scale)
key_transposed_scaled = Mul (key_transposed, tmp_7)
tmp_8 = MatMul (query_scaled, key_transposed_scaled)
tmp_9 = Add (tmp_8, attn_mask)
attn_weight = Softmax <axis: int = -1> (tmp_9)
dropout_p = Constant <value_float: float = @dropout_p> ()
attn_weight_10, _ = Dropout (attn_weight, dropout_p)
return_val = MatMul (attn_weight_10, value)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
RuntimeError: ONNX Runtime failed to evaluate:
Inputs:
{'input_0': array([[[ 2.04 , 2.672 , 4.613 , 1.248 , 3.639 , 4.5 ,
3.27 , 4.965 ],
[ 7.777 , 2.268 , -3.242 , -4.867 , 8.37 , -0.4746 ,
0.0967 , 2.89 ],
[-2.54 , -2.117 , -0.501 , -5.863 , -0.4658 , 3.578 ,
-3.137 , -5.73 ]],
[[ 0.06152, 1.063 , 3.05 , -3.066 , -8.22 , 5.688 ,
-2.875 , 2.77 ],
[ 1.556 , -4.26 , -2.574 , -1.371 , -8.65 , -2.504 ,
6.18 , 8.1 ],
[-4.598 , -0.58 , 1.266 , 1.758 , -0.8438 , 8.89 ,
6.355 , -4.957 ]],
[[-2.574 , -2.398 , -0.879 , -1.02 , 4.895 , 4.797 ,
2.215 , -5.582 ],
[ 5.21 , -1.248 , -6.758 , -2.777 , 7.156 , 8.086 ,
-5.055 , -8.92 ],
[-1.767 , -1.995 , 2.117 , 2.197 , -1.301 , 0.03516,
1.037 , -0.0791 ]],
[[ 7.03 , -5.723 , 0.5625 , -7.727 , -7.04 , 2.092 ,
-7.453 , 6.836 ],
[-1.512 , 2.469 , -8.45 , 1.898 , 7.496 , -1.74 ,
-2.021 , -2.953 ],
[ 4.043 , 8.16 , 5.35 , -8.086 , 0.8613 , -4.516 ,
-5.625 , -5.45 ]]], dtype=float16),
'input_1': array([[[ 8.85 , -1.775 , -4.457 , -4.824 , 8.58 , -2.777 ,
7.58 , 5.66 ],
[ 7.637 , -2.232 , 3.832 , 0.1934 , -0.2461 , 4.957 ,
-3.059 , -2.734 ],
[ 4.016 , -8.28 , 1.266 , 0.7383 , 0.677 , -4.992 ,
7.707 , -9. ],
[-8.56 , -2.988 , -2.707 , 6.777 , 3.91 , -5.062 ,
-1.266 , -4.72 ],
[ 7.023 , -8.71 , 3.05 , -8.17 , 0.624 , 4.836 ,
-7.656 , -6.812 ],
[-3.086 , -5.16 , -7.973 , -2.232 , 7.82 , 2.68 ,
-6.652 , 8.44 ]],
[[ 0.4658 , -6.934 , -5.59 , -0.3076 , 6.44 , -2.303 ,
7.242 , -5.484 ],
[-3.523 , -2.268 , 2.654 , -0.9316 , 1.811 , 2.004 ,
-1.512 , 7.99 ],
[-3.93 , -8.35 , -5.188 , -8.1 , 3.7 , 6.18 ,
-2.293 , -2.523 ],
[-1.925 , 2.68 , -8.15 , 7.46 , -1.995 , 2.936 ,
-1.459 , -5.188 ],
[-5.08 , 8.73 , 2.7 , -6.82 , -7.55 , 4.22 ,
-0.3604 , 2.936 ],
[-0.04395, -4.246 , -2.338 , 0.923 , 4.938 , -8.3 ,
-7.84 , -2.004 ]],
[[-1.099 , -7.797 , -7.39 , 3.516 , 2.89 , -2.11 ,
4.457 , 7.48 ],
[-0.3604 , -8.41 , -4.21 , 6.793 , -8.55 , 3.945 ,
-7.207 , -7.902 ],
[ 6.555 , -8.63 , 6.6 , 8.52 , 7.75 , -8.03 ,
-2.32 , 5.82 ],
[ 1.6 , -1.556 , -8.17 , 8.52 , 3.277 , 8.01 ,
4.562 , -1.099 ],
[-5.844 , -1.099 , 6.11 , -6.54 , 1.705 , 7.586 ,
1.705 , -3.146 ],
[-8.19 , -3.102 , 8.305 , -8.47 , -3.438 , 0.4395 ,
3.533 , 6.926 ]],
[[ 0.03516, 4.086 , -3.7 , -3.016 , 7.277 , -4.316 ,
3.55 , -1.644 ],
[ 4.5 , -3.34 , -6.96 , -4.402 , -5.97 , 0.3955 ,
-4.21 , 8.3 ],
[ 0.677 , 6.406 , 7.137 , 8.1 , 0.633 , -2.031 ,
-6.82 , -8.59 ],
[ 1.055 , -7.13 , -6.906 , 0.4834 , -5.934 , -8.07 ,
-1.705 , -8.586 ],
[ 5.027 , -6.047 , 0.2197 , -1.942 , 2.25 , -8.94 ,
-3.516 , 7.61 ],
[ 2.215 , 6.074 , -2.69 , -6.344 , -3.393 , -8.516 ,
-2.629 , -4.387 ]]], dtype=float16),
'input_2': array([[[-4.844 , -8.766 , 8.63 , -8.32 , 1.89 , 3.383 ,
-5.8 , -3.156 ],
[-4.387 , -2.865 , 2.734 , -1.248 , 0.05273, 0.01758,
5.47 , -0.9316 ],
[-2.418 , -5.82 , 6.594 , 4.457 , 8.83 , 2.398 ,
4.438 , -1.925 ],
[-2.514 , 7.75 , 0.12305, 1.679 , 8.65 , 5.54 ,
-4.746 , -8.766 ],
[-2.734 , 0.334 , 8.37 , 2.39 , 2.021 , -8.25 ,
4.156 , -7.902 ],
[-1.872 , -4.29 , -7.734 , 4.605 , 1.8545 , -8.79 ,
5.09 , 3.453 ]],
[[-8.42 , -6.96 , -8.05 , 1.274 , -8.03 , -7.004 ,
-8.03 , 4.12 ],
[-8.71 , -3.533 , 6.812 , 8.22 , 3.234 , -2.434 ,
-3.78 , 4.86 ],
[-5.273 , -3.621 , 4.543 , -2.926 , 2.469 , 2.805 ,
6.477 , 3.885 ],
[ 8.36 , -6.242 , -1.301 , 8.484 , 6.504 , 3.305 ,
2.531 , 3.832 ],
[-3.191 , -6.574 , 6.23 , 5.105 , 4.414 , -3.523 ,
-4.473 , 3.066 ],
[-1.6 , 3.91 , 7.285 , -5.934 , 5.33 , 5.83 ,
-1.775 , 1.195 ]],
[[-2.338 , -1.107 , -6.875 , -4.234 , 0.3428 , -6.996 ,
-4.19 , -0.923 ],
[ 1.951 , -8.95 , 2.82 , -4.895 , 6.426 , -8.35 ,
-8.98 , 7.438 ],
[-3.332 , -7.973 , -1.266 , 5.316 , -4.58 , 8.766 ,
-0.6855 , -3.965 ],
[ 3.867 , -7.305 , -1.564 , -2.725 , 3.438 , 0.2197 ,
3.814 , -7.49 ],
[ 2.629 , 5.66 , -6.145 , 3.594 , 1.028 , -1.661 ,
6.906 , -2.645 ],
[-7.03 , -4.332 , -8.016 , -7.777 , -4.094 , -9. ,
-8.22 , -3.262 ]],
[[-6.195 , 4.824 , 7.066 , 7.848 , -7.79 , 4.484 ,
7.62 , -1.582 ],
[ 8.805 , -6.734 , 5.906 , -1.081 , -2.945 , 8.92 ,
-8.92 , -6.715 ],
[ 8.07 , 5.703 , -7.496 , -1.116 , -8.89 , 1.468 ,
5.633 , 5.23 ],
[-6.188 , 2.795 , 5.38 , -6.117 , -2.11 , -2.18 ,
8.52 , -1.002 ],
[ 8.08 , 4.824 , 8.914 , 3.674 , 5.316 , 0.826 ,
7.17 , 5.098 ],
[-6.215 , 8.39 , -6.934 , 8.305 , -6.074 , 7.77 ,
-5.703 , 4.023 ]]], dtype=float16)}
Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[4,3,8] input_0, float16[4,6,8] input_1, float16[4,6,8] input_2) => (float16[4,3,8] _val_4)
<float16 _val_3>
{
_val_3 = pkg.onnxscript.torch_lib._attention_scale (input_0)
_val_4 = pkg.onnxscript.torch_lib._aten_scaled_dot_product_attention_no_mask_onnx <dropout_p: float = 0> (input_0, input_1, input_2, _val_3)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_attention_scale (query) => (scale)
{
tmp = Shape (query)
int64_m1 = Constant <value: tensor = int64 int64_m1 {-1}> ()
tmp_subscripted = Gather <axis: int = 0> (tmp, int64_m1)
embedding_size = CastLike (tmp_subscripted, query)
const = Constant <value: tensor = float const {1}> ()
tmp_0 = Sqrt (embedding_size)
const_cast = CastLike (const, tmp_0)
scale = Div (const_cast, tmp_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_aten_scaled_dot_product_attention_no_mask_onnx <dropout_p>(query, key, value, scale) => (return_val)
{
key_shape = Shape (key)
int64_0_1d = Constant <value: tensor = int64[1] int64_0_1d {0}> ()
int64_1_1d = Constant <value: tensor = int64[1] int64_1_1d {1}> ()
int64_m1_1d = Constant <value: tensor = int64[1] int64_m1_1d {-1}> ()
int64_9223372036854775807_1d = Constant <value: tensor = int64[1] int64_9223372036854775807_1d {9223372036854775807}> ()
key_last_dim = Slice (key_shape, int64_m1_1d, int64_9223372036854775807_1d, int64_0_1d, int64_1_1d)
int64_0_1d_0 = Constant <value: tensor = int64[1] int64_0_1d_0 {0}> ()
int64_1_1d_1 = Constant <value: tensor = int64[1] int64_1_1d_1 {1}> ()
int64_m2_1d = Constant <value: tensor = int64[1] int64_m2_1d {-2}> ()
int64_m1_1d_2 = Constant <value: tensor = int64[1] int64_m1_1d_2 {-1}> ()
key_second_last_dim = Slice (key_shape, int64_m2_1d, int64_m1_1d_2, int64_0_1d_0, int64_1_1d_1)
int64_0_1d_3 = Constant <value: tensor = int64[1] int64_0_1d_3 {0}> ()
int64_1_1d_4 = Constant <value: tensor = int64[1] int64_1_1d_4 {1}> ()
int64_m2_1d_5 = Constant <value: tensor = int64[1] int64_m2_1d_5 {-2}> ()
key_first_dims = Slice (key_shape, int64_0_1d_3, int64_m2_1d_5, int64_0_1d_3, int64_1_1d_4)
tmp = Constant <value_ints: ints = [-1]> ()
key_squeezed_shape = Concat <axis: int = 0> (tmp, key_second_last_dim, key_last_dim)
key_squeezed = Reshape (key, key_squeezed_shape)
key_squeezed_transposed = Transpose <perm: ints = [0, 2, 1]> (key_squeezed)
key_transposed_shape = Concat <axis: int = 0> (key_first_dims, key_last_dim, key_second_last_dim)
key_transposed = Reshape (key_squeezed_transposed, key_transposed_shape)
tmp_6 = Sqrt (scale)
query_scaled = Mul (query, tmp_6)
tmp_7 = Sqrt (scale)
key_transposed_scaled = Mul (key_transposed, tmp_7)
tmp_8 = MatMul (query_scaled, key_transposed_scaled)
attn_weight = Softmax <axis: int = -1> (tmp_8)
dropout_p = Constant <value_float: float = @dropout_p> ()
attn_weight_9, _ = Dropout (attn_weight, dropout_p)
return_val = MatMul (attn_weight_9, value)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[4,4,3,8] input_0, float16[4,4,6,8] input_1, float16[4,4,6,8] input_2) => (float16[4,4,3,8] _val_5)
<float16 _val_3, float[3,6] _val_4>
{
_val_3 = pkg.onnxscript.torch_lib._attention_scale (input_0)
_val_4 = pkg.onnxscript.torch_lib._causal_attention_mask (input_0, input_1)
_val_5 = pkg.onnxscript.torch_lib._aten_scaled_dot_product_attention_float_mask_onnx <dropout_p: float = 0> (input_0, input_1, input_2, _val_4, _val_3)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_attention_scale (query) => (scale)
{
tmp = Shape (query)
int64_m1 = Constant <value: tensor = int64 int64_m1 {-1}> ()
tmp_subscripted = Gather <axis: int = 0> (tmp, int64_m1)
embedding_size = CastLike (tmp_subscripted, query)
const = Constant <value: tensor = float const {1}> ()
tmp_0 = Sqrt (embedding_size)
const_cast = CastLike (const, tmp_0)
scale = Div (const_cast, tmp_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_causal_attention_mask (query, key) => (attn_mask_10)
{
tmp = Shape (query)
int64_0_1d = Constant <value: tensor = int64[1] int64_0_1d {0}> ()
int64_1_1d = Constant <value: tensor = int64[1] int64_1_1d {1}> ()
int64_m2_1d = Constant <value: tensor = int64[1] int64_m2_1d {-2}> ()
int64_m1_1d = Constant <value: tensor = int64[1] int64_m1_1d {-1}> ()
target_length = Slice (tmp, int64_m2_1d, int64_m1_1d, int64_0_1d, int64_1_1d)
tmp_0 = Shape (key)
int64_0_1d_1 = Constant <value: tensor = int64[1] int64_0_1d_1 {0}> ()
int64_1_1d_2 = Constant <value: tensor = int64[1] int64_1_1d_2 {1}> ()
int64_m2_1d_3 = Constant <value: tensor = int64[1] int64_m2_1d_3 {-2}> ()
int64_m1_1d_4 = Constant <value: tensor = int64[1] int64_m1_1d_4 {-1}> ()
source_length = Slice (tmp_0, int64_m2_1d_3, int64_m1_1d_4, int64_0_1d_1, int64_1_1d_2)
size = Concat <axis: int = 0> (target_length, source_length)
const = Constant <value: tensor = float const {1}> ()
attn_mask = Expand (const, size)
attn_mask_5 = Trilu <upper: int = 0> (attn_mask)
const_6 = Constant <value: tensor = float const_6 {0}> ()
const_6_cast = CastLike (const_6, attn_mask_5)
tmp_7 = Equal (attn_mask_5, const_6_cast)
tmp_8 = Constant <value_float: float = -inf> ()
const_9 = Constant <value: tensor = float const_9 {0}> ()
const_9_cast = CastLike (const_9, tmp_8)
attn_mask_10 = Where (tmp_7, tmp_8, const_9_cast)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["" : 18]
>
_aten_scaled_dot_product_attention_float_mask_onnx <dropout_p>(query, key, value, attn_mask, scale) => (return_val)
{
key_shape = Shape (key)
int64_0_1d = Constant <value: tensor = int64[1] int64_0_1d {0}> ()
int64_1_1d = Constant <value: tensor = int64[1] int64_1_1d {1}> ()
int64_m1_1d = Constant <value: tensor = int64[1] int64_m1_1d {-1}> ()
int64_9223372036854775807_1d = Constant <value: tensor = int64[1] int64_9223372036854775807_1d {9223372036854775807}> ()
key_last_dim = Slice (key_shape, int64_m1_1d, int64_9223372036854775807_1d, int64_0_1d, int64_1_1d)
int64_0_1d_0 = Constant <value: tensor = int64[1] int64_0_1d_0 {0}> ()
int64_1_1d_1 = Constant <value: tensor = int64[1] int64_1_1d_1 {1}> ()
int64_m2_1d = Constant <value: tensor = int64[1] int64_m2_1d {-2}> ()
int64_m1_1d_2 = Constant <value: tensor = int64[1] int64_m1_1d_2 {-1}> ()
key_second_last_dim = Slice (key_shape, int64_m2_1d, int64_m1_1d_2, int64_0_1d_0, int64_1_1d_1)
int64_0_1d_3 = Constant <value: tensor = int64[1] int64_0_1d_3 {0}> ()
int64_1_1d_4 = Constant <value: tensor = int64[1] int64_1_1d_4 {1}> ()
int64_m2_1d_5 = Constant <value: tensor = int64[1] int64_m2_1d_5 {-2}> ()
key_first_dims = Slice (key_shape, int64_0_1d_3, int64_m2_1d_5, int64_0_1d_3, int64_1_1d_4)
tmp = Constant <value_ints: ints = [-1]> ()
key_squeezed_shape = Concat <axis: int = 0> (tmp, key_second_last_dim, key_last_dim)
key_squeezed = Reshape (key, key_squeezed_shape)
key_squeezed_transposed = Transpose <perm: ints = [0, 2, 1]> (key_squeezed)
key_transposed_shape = Concat <axis: int = 0> (key_first_dims, key_last_dim, key_second_last_dim)
key_transposed = Reshape (key_squeezed_transposed, key_transposed_shape)
tmp_6 = Sqrt (scale)
query_scaled = Mul (query, tmp_6)
tmp_7 = Sqrt (scale)
key_transposed_scaled = Mul (key_transposed, tmp_7)
tmp_8 = MatMul (query_scaled, key_transposed_scaled)
tmp_9 = Add (tmp_8, attn_mask)
attn_weight = Softmax <axis: int = -1> (tmp_9)
dropout_p = Constant <value_float: float = @dropout_p> ()
attn_weight_10, _ = Dropout (attn_weight, dropout_p)
return_val = MatMul (attn_weight_10, value)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
RuntimeError: ONNX Runtime failed to evaluate:
Inputs:
{'input_0': array([[[[ 1.283 , -8.02 , -3.604 , 4.895 , -0.8877 , 4.332 ,
4.43 , -4.836 ],
[-1.661 , 7.812 , -6.625 , 8.734 , -5.31 , 7.875 ,
-2.795 , 3.217 ],
[ 2.453 , 2.479 , -8.66 , 8.42 , -7.348 , 1.433 ,
-0.2725 , 8.69 ]],
[[ 4.703 , -4.297 , 8.8 , 0.02637, 7.33 , -6.46 ,
8.37 , -5.203 ],
[-4.867 , 1.582 , 2.172 , -3.488 , -6.555 , -1.301 ,
-3.902 , -1.424 ],
[-6.777 , -7.418 , 7.285 , -3.023 , -1.758 , 4.465 ,
6.68 , -2.855 ]],
[[-4.035 , 2.855 , 3.129 , 7.242 , 5.703 , -3.031 ,
-5.57 , 5.4 ],
[ 8.2 , 0.7383 , 2.777 , -7.145 , 4.516 , -5.633 ,
6.062 , -6.004 ],
[ 7.156 , 8.46 , 8.67 , -1.591 , 0.3252 , 8.875 ,
4.484 , -5.316 ]],
[[-2.408 , 1.477 , 8.47 , 7.98 , 3.006 , 7.25 ,
-6.32 , 4.754 ],
[-2.84 , -1.371 , -4.29 , 0.9756 , 3.604 , 8.31 ,
-7.2 , 1.617 ],
[ 3.348 , -4.65 , 3.322 , 0.4043 , 7.777 , 6.496 ,
4.836 , 4.633 ]]],
[[[-4.58 , 0.1846 , -7.137 , -6.285 , -3.2 , 8.5 ,
-2.39 , -6.617 ],
[ 5.008 , 8.914 , 7.016 , -0.7646 , 1.767 , -8.73 ,
-5.117 , -7.586 ],
[-2.268 , -6.777 , -4.43 , -0.4219 , 5.71 , 4.21 ,
-8.92 , -2.629 ]],
[[-4.57 , -2.11 , 7.34 , 4.914 , -5.176 , 0.967 ,
-7.664 , 5.57 ],
[-0.949 , -1.371 , 0.8877 , -2.39 , 7.312 , 1.67 ,
6.4 , -4.062 ],
[ 7.06 , 0.703 , -4.71 , -1.143 , 0.7646 , 1.696 ,
-8.09 , 6.875 ]],
[[ 0.835 , 3.709 , 7.82 , 1.731 , 0. , -0.1582 ,
-5.43 , 3.312 ],
[-7.54 , -4.535 , 5.598 , -6.258 , 5.203 , 3.664 ,
-2.303 , -3.023 ],
[-4.816 , -8.37 , 1.23 , -3.895 , -6.707 , 2.98 ,
2.7 , -6.855 ]],
[[ 4.516 , 2.953 , 5.047 , -4.08 , 0.659 , 7.727 ,
-7.47 , -8.05 ],
[-7.4 , -7.32 , -8.44 , 7.453 , -0.545 , 4.156 ,
6.875 , 0.87 ],
[ 4.773 , -1.415 , 1.116 , 3.965 , 8.02 , -5.766 ,
-1.529 , -8.63 ]]],
[[[ 7.76 , 3.674 , -4.72 , -8.32 , -1.749 , 7.03 ,
2.363 , -3.086 ],
[-2.848 , -2.338 , 7.902 , -2.61 , 2.76 , -0.879 ,
7.47 , -1.081 ],
[-1.195 , -0.2812 , 8.3 , 1.468 , -6.03 , 8.89 ,
-7.312 , 3.973 ]],
[[-6.523 , 2.945 , -5.582 , -0.2197 , -4.395 , 2.102 ,
7.305 , 8.414 ],
[ 4.234 , -3.217 , -2.715 , 5.195 , -1.178 , 4.867 ,
4.016 , 0.7734 ],
[ 5.793 , 0.826 , -5.035 , -5.246 , 1.318 , 4.508 ,
3.297 , 0.1846 ]],
[[-1.248 , -6.258 , 8.75 , -1.626 , -4.445 , 1.802 ,
8.36 , -5.71 ],
[-5.047 , 5.492 , 6.883 , -0.0879 , -3.78 , 1.564 ,
1.837 , -4.613 ],
[-4.93 , 7.375 , 1.081 , 8.72 , -8.016 , 0.0967 ,
1.099 , 4.957 ]],
[[-6.1 , 7.91 , 2.479 , -7.777 , 3.516 , -1.081 ,
0.8438 , -4.465 ],
[-4.008 , 8.11 , -1.573 , 0.5977 , -7.973 , -1.204 ,
0.51 , 0.2812 ],
[ 2.785 , -8.57 , 7.727 , 4.29 , -8.84 , -2.629 ,
-7.277 , 7.82 ]]],
[[[ 3.945 , 8.695 , -4.094 , 5.96 , -5.035 , -6.47 ,
1.23 , 0.7295 ],
[ 6.09 , -5.57 , 5.188 , -7.117 , 4.613 , -7.117 ,
3.533 , -7.883 ],
[ 7.215 , 4.184 , -2.328 , -5.457 , 0.2461 , 6.953 ,
-6.04 , -1.705 ]],
[[-2.734 , -5.836 , -4.008 , 3.438 , -7.094 , 5.035 ,
5.87 , -7.234 ],
[-8.86 , -6.18 , -4.457 , 5. , 2.848 , 3.613 ,
2.785 , -3.023 ],
[ 8.47 , 0.712 , 4.156 , 4.105 , -5.273 , 8.3 ,
6.414 , 6.047 ]],
[[ 1.784 , 5.117 , -0.05273, -5.61 , -2.172 , -8.15 ,
3.023 , 7.047 ],
[-7.18 , 4.508 , 5.582 , 6.953 , -3.86 , -7.55 ,
-8.81 , -7.656 ],
[ 8.24 , 3.85 , 2.584 , -7.086 , -3.129 , 4.344 ,
-6.99 , -8.836 ]],
[[ 8.664 , -4.15 , -0.659 , -7.707 , 0.9404 , -5.47 ,
-3.77 , 4.234 ],
[-5.78 , 7.32 , 3.629 , 2.707 , -1.96 , -0.9404 ,
7.33 , 1.169 ],
[ 6.312 , 2.479 , 6.83 , -8.37 , -4.78 , 3.086 ,
-4.086 , 2.855 ]]]], dtype=float16),
'input_1': array([[[[-2.4609e+00, 3.8848e+00, -8.1328e+00, 5.0977e-01,
-4.5430e+00, -6.7422e+00, -5.3789e+00, 3.9648e+00],
[ 5.6250e-01, -3.7793e+00, 1.3447e+00, 8.6484e+00,
-6.6719e+00, -1.7930e+00, 6.8555e-01, 2.7598e+00],
[-3.1914e+00, -6.8555e-01, -4.0859e+00, -9.4922e-01,
-1.1777e+00, 2.1719e+00, 6.9336e+00, -1.3799e+00],
[-3.6484e+00, -5.3711e+00, -8.7891e+00, 8.8281e+00,
-6.5117e+00, 3.9375e+00, -1.2656e+00, -6.3633e+00],
[ 5.8887e-01, 5.2734e-02, -1.8281e+00, 1.1953e+00,
1.4326e+00, -8.2812e+00, 7.8750e+00, 5.7031e+00],
[ 3.6836e+00, 6.3281e-01, 2.0742e+00, -8.6016e+00,
-3.5781e+00, -8.5254e-01, 7.0234e+00, -6.7070e+00]],
[[-7.4609e+00, 1.4502e+00, -3.2344e+00, -1.6084e+00,
-5.7578e+00, 6.9766e+00, -8.5312e+00, -2.9453e+00],
[ 3.6738e+00, 6.6367e+00, 4.4453e+00, 2.9883e+00,
1.1074e+00, 3.5859e+00, 8.1094e+00, -5.7812e+00],
[ 2.3730e+00, -3.3477e+00, 5.3086e+00, -5.6797e+00,
-8.3672e+00, 8.1016e+00, 8.0938e+00, -9.6680e-01],
[ 2.1719e+00, -1.4502e+00, 6.8906e+00, -8.6328e+00,
-5.6953e+00, 3.5156e-01, -7.5156e+00, 8.3047e+00],
[-7.1445e+00, 4.3242e+00, 5.9688e+00, -8.6641e+00,
-5.7656e+00, -2.3555e+00, -7.6797e+00, 9.6680e-01],
[ 4.2109e+00, 3.8242e+00, 4.0430e-01, -8.7891e-03,
5.0469e+00, -2.5312e+00, 8.9297e+00, 3.2070e+00]],
[[-8.4062e+00, -6.3828e+00, -7.1191e-01, -1.9600e+00,
-6.4062e+00, -7.2266e+00, -8.4688e+00, -6.9434e-01],
[-5.4492e-01, 7.2852e+00, 2.7500e+00, 1.4062e+00,
-6.1016e+00, 4.6328e+00, -6.0391e+00, 5.3164e+00],
[ 2.6641e+00, 4.4141e+00, 5.7031e+00, 2.9609e+00,
4.8242e+00, -3.3926e+00, -6.5938e+00, 1.4326e+00],
[ 3.8848e+00, -6.2031e+00, -3.8320e+00, -4.5781e+00,
6.0195e+00, -5.6094e+00, 8.5156e+00, -1.3623e+00],
[-1.6875e+00, -8.7891e-02, 7.7969e+00, -3.7090e+00,
6.5820e+00, 6.8125e+00, -2.9355e+00, -4.6680e+00],
[-4.7031e+00, -2.6719e+00, 6.3281e-01, -4.5352e+00,
-5.5820e+00, 5.4297e+00, 7.5234e+00, -6.4141e+00]],
[[ 3.2344e+00, 8.3906e+00, -2.0117e+00, -1.4062e+00,
6.0898e+00, -4.1836e+00, -3.3047e+00, 7.4609e+00],
[-4.0156e+00, 1.6348e+00, -1.5117e+00, -2.2422e+00,
-5.0977e+00, 5.0000e+00, -5.8203e+00, -7.9297e+00],
[ 1.6436e+00, -2.4883e+00, 8.9375e+00, -3.0312e+00,
-5.3164e+00, 5.4922e+00, 2.2070e+00, 5.4297e+00],
[ 4.8164e+00, 2.9355e+00, -8.2031e+00, 4.6484e+00,
7.6016e+00, -8.4531e+00, 5.8086e+00, -4.5078e+00],
[ 1.2129e+00, 6.1250e+00, 1.6172e+00, 1.7930e+00,
-2.2227e+00, 1.8721e+00, -6.7578e+00, -7.8203e+00],
[ 5.0273e+00, -1.3184e+00, -1.7842e+00, -8.2344e+00,
7.3398e+00, -3.2520e-01, 1.8105e+00, 1.1250e+00]]],
[[[-1.7754e+00, 1.7578e-02, -4.4824e-01, -7.9980e-01,
6.6172e+00, -7.9453e+00, 3.3750e+00, 5.3867e+00],
[ 3.2520e-01, 2.9883e+00, -1.4941e-01, -8.7891e-01,
-3.3398e+00, 8.8594e+00, -2.7344e+00, -1.4502e+00],
[-8.8281e+00, -6.8828e+00, -5.0078e+00, -5.4492e-01,
-3.5508e+00, -6.3438e+00, 5.2305e+00, 5.2188e+00],
[-1.9512e+00, -5.3613e-01, -8.4062e+00, 1.1250e+00,
-7.2852e+00, -7.7773e+00, 3.8945e+00, -6.5234e+00],
[-6.2656e+00, -2.4531e+00, 4.6953e+00, 5.8359e+00,
-6.5742e+00, -8.4688e+00, 2.7949e+00, 7.8125e+00],
[-8.5547e+00, 7.5156e+00, -7.6641e+00, 6.5742e+00,
2.7246e+00, 7.1445e+00, -4.2266e+00, -4.0234e+00]],
[[ 7.5859e+00, 3.4102e+00, 4.8086e+00, -3.5430e+00,
8.7969e+00, 1.5469e+00, 3.1719e+00, -6.2500e+00],
[-1.9160e+00, -1.5557e+00, -8.1562e+00, -1.2656e+00,
1.8633e+00, -1.7227e+00, -7.8047e+00, 4.3945e-02],
[-1.2305e-01, -8.0469e+00, -4.2031e+00, 3.3398e-01,
-3.1914e+00, -5.2734e+00, -3.4727e+00, -6.7148e+00],
[ 3.7344e+00, -8.2422e+00, -4.9219e+00, -8.3438e+00,
-4.8672e+00, 8.5703e+00, 8.4531e+00, -5.3711e+00],
[-1.7578e+00, -1.1426e+00, -2.6289e+00, -4.9922e+00,
2.4961e+00, 2.0918e+00, 5.9414e+00, 5.2578e+00],
[-3.2695e+00, -3.1016e+00, 4.8945e+00, 3.2617e+00,
-4.6562e+00, 5.4766e+00, 8.0703e+00, 3.8672e-01]],
[[ 3.5156e+00, 2.1621e+00, 5.4062e+00, -3.7617e+00,
-5.0547e+00, -4.7461e+00, -3.3320e+00, -3.5586e+00],
[ 1.4941e-01, 5.3164e+00, -3.1914e+00, -2.3477e+00,
-6.4688e+00, 3.6289e+00, -2.6719e+00, -3.4023e+00],
[-6.9453e+00, -5.3516e+00, -7.6465e-01, -4.6250e+00,
-4.4824e-01, -3.4375e+00, 5.7031e+00, 8.8438e+00],
[-4.3945e-02, -8.0000e+00, -8.1738e-01, -3.0859e+00,
6.2578e+00, 2.0469e+00, 4.7383e+00, 8.7891e-02],
[-7.1992e+00, 5.9609e+00, -6.8359e+00, 4.9062e+00,
-2.3477e+00, 1.1074e+00, -7.7188e+00, -7.9727e+00],
[ 8.0000e+00, 3.3477e+00, -5.3867e+00, 5.8281e+00,
5.1250e+00, -5.8203e+00, 4.4648e+00, -7.8047e+00]],
[[ 1.5293e+00, 2.5312e+00, -5.8887e-01, 4.2188e+00,
-8.8438e+00, -7.2969e+00, -6.1094e+00, 8.2188e+00],
[-7.4688e+00, -2.0215e-01, -5.0625e+00, 8.1250e+00,
-6.9434e-01, 3.1016e+00, 4.3750e+00, -7.7695e+00],
[-2.3477e+00, 7.8750e+00, -8.3496e-01, -8.1875e+00,
8.2891e+00, -6.9062e+00, -7.2070e+00, -4.0859e+00],
[ 3.7969e+00, -6.8555e+00, -1.6963e+00, 2.7773e+00,
-8.7891e-01, -6.4141e+00, -3.3828e+00, -1.4854e+00],
[ 2.4688e+00, -8.8594e+00, -8.3828e+00, 2.3555e+00,
2.8477e+00, 6.9688e+00, -6.3281e+00, 3.9551e+00],
[ 5.2734e-02, 2.7500e+00, -1.8281e+00, 8.9648e-01,
-1.7930e+00, -7.3125e+00, 6.6094e+00, 5.0352e+00]]],
[[[-4.3594e+00, -7.5078e+00, 4.7109e+00, -6.8047e+00,
6.7148e+00, 3.3926e+00, 1.8105e+00, -4.2539e+00],
[ 5.5195e+00, 8.8047e+00, -5.3516e+00, -2.0312e+00,
3.3320e+00, 1.2568e+00, -8.7891e+00, 7.2148e+00],
[-3.1367e+00, 6.3281e-01, -3.4531e+00, 7.2344e+00,
7.3125e+00, 8.0859e-01, -4.5703e+00, 5.2461e+00],
[-6.0547e+00, -5.2734e+00, -4.6250e+00, 3.1914e+00,
-6.8555e-01, -3.4727e+00, 6.5391e+00, 1.7402e+00],
[-2.6992e+00, 3.6211e+00, -6.0312e+00, -3.2168e+00,
-5.5371e-01, 8.2266e+00, -5.2383e+00, 6.8750e+00],
[-1.1074e+00, -7.7…-2.83 , -1.573 , -0.712 ,
E -6.555 , -5.652 ]],
E
E [[ 7.48 , -8.89 , -6.344 , 4.88 , 5.414 , -7.6 ,
E -7.656 , -2.383 ],
E [-7.418 , 4.613 , 1.573 , -5.695 , 7.06 , -2.188 ,
E 1.468 , 1.872 ],
E [ 1.31 , -8.87 , 0.791 , 1.046 , 8.39 , -6.785 ,
E 0.5186 , 2.328 ]]],
E
E
E [[[ 3.586 , -8.734 , 0.1758 , -2.584 , 5.203 , -6.47 ,
E 4.766 , -4.633 ],
E [ 6.547 , 4.156 , 3.55 , -4.19 , -0.5625 , -7.848 ,
E 2.84 , -1.468 ],
E [ 1.151 , 8.86 , -4.43 , -8.74 , -3.498 , 2.637 ,
E -8.98 , 2.848 ]],
E
E [[-4.535 , 2.074 , 4.695 , -8.87 , 4.684 , -0.2461 ,
E 5.125 , 7.164 ],
E [ 3.91 , 8.72 , 4.414 , -0.6064 , 2.012 , 0.9316 ,
E 6.32 , 3.41 ],
E [ 6.32 , -6.695 , 4.938 , 0.5625 , -6.68 , 2.96 ,
E 2.637 , -5.688 ]],
E
E [[ 1.529 , -0.545 , 1.327 , -4.824 , 2.328 , -6.117 ,
E 8.55 , 7.164 ],
E [ 1.424 , -5.16 , 3.006 , 3.217 , 4.08 , 6.582 ,
E 1.74 , 4.387 ],
E [-8.87 , 7.207 , 2.594 , -1.38 , -4.516 , 6.918 ,
E -0.3604 , 2.092 ]],
E
E [[-3.902 , 2.637 , -8.95 , 1.925 , -0.05273, 6.723 ,
E 3.973 , 3.797 ],
E [-1.916 , 7.637 , 3.383 , -3.568 , 2.584 , 1.028 ,
E -5.45 , 5.97 ],
E [-0.2461 , 6.695 , -3.79 , -4.035 , -2.398 , 7.707 ,
E -8.91 , 1.828 ]]],
E
E
E [[[-7.56 , -1.292 , 2.574 , 8. , 4.555 , -8.32 ,
E 3.805 , 5.062 ],
E [-3.613 , 8.45 , -1.371 , -1.872 , 7.016 , 5.992 ,
E 0.668 , 0.413 ],
E [-2.268 , -8.29 , 7.86 , 6.33 , -7.17 , 3.902 ,
E 8.52 , 5.23 ]],
E
E [[-4.42 , 0.2461 , 2.664 , -0.2725 , -4.92 , 4.402 ,
E 3.91 , -3.488 ],
E [ 4.297 , -2.145 , 3.754 , -4.094 , 3.146 , -0.5713 ,
E -8.21 , 8.91 ],
E [ 0.457 , 6.406 , -1.45 , 5.168 , 1.784 , -4.12 ,
E -7.637 , -8.99 ]],
E
E [[ 3.129 , -1.758 , 4.992 , -1.96 , -0.3691 , 0.501 ,
E 2.223 , 1.573 ],
E [-4.676 , -3.129 , 0.2988 , -8.35 , -0.712 , 2.531 ,
E -5.75 , -3.85 ],
E [-6.117 , -3.824 , 6.734 , -2.18 , 8.77 , -6.336 ,
E -3.92 , -7.066 ]],
E
E [[-0.4043 , 1.433 , 4.21 , 3.99 , -5.71 , 1.925 ,
E 6.004 , 2.223 ],
E [ 6.336 , -7.355 , 1.67 , 3.41 , 1.881 , 3.287 ,
E 0.747 , -4.844 ],
E [ 5.42 , -1.591 , 7.094 , -4.344 , 0.4043 , 0.5625 ,
E -0.545 , -4.836 ]]],
E
E
E [[[ 1.274 , -0.6943 , 7.004 , 3.348 , 0.5713 , -4.465 ,
E 0.8086 , 7.594 ],
E [-5.266 , 4.105 , 0.8174 , 5.42 , -7.84 , 3.805 ,
E 2.988 , -6.25 ],
E [-3.814 , 1.8545 , 4.562 , -0.1406 , -7.61 , 2.348 ,
E -3.2 , 7.566 ]],
E
E [[ 8.414 , 5.29 , -2.434 , 4.156 , -1.969 , -5.406 ,
E 4.156 , 3.121 ],
E [-3.031 , 1.6875 , 6.133 , 2.373 , -8.01 , -1.125 ,
E 4.586 , 0.4746 ],
E [ 6.758 , -8.44 , 8.7 , -2.996 , 2.383 , 4.402 ,
E 5.81 , 3.172 ]],
E
E [[-7.727 , -0.7207 , 1.828 , 2.504 , 0.0791 , -2.514 ,
E -7.375 , 5.035 ],
E [ 5.24 , 4.07 , 1.169 , -1.67 , -1.898 , -7.508 ,
E -7.137 , 8.55 ],
E [ 4.65 , 7.25 , 4.402 , 5.02 , 5.266 , -8.77 ,
E -0.0967 , 0.589 ]],
E
E [[-2.066 , -5.42 , 4.844 , 0.949 , -8.36 , -3.93 ,
E -3.031 , 2.293 ],
E [ 3.227 , -2.102 , -1.547 , -1.362 , -6.926 , -2.62 ,
E 3.207 , 2.504 ],
E [-5.688 , -3.2 , -1.714 , -1.046 , -5.703 , -3.568 ,
E -3.27 , 0.659 ]]]], dtype=float16),
E 'input_1': array([[[[ 7.0312e-02, -7.2852e+00, -1.9160e+00, 6.9531e+00,
E -1.1602e+00, 5.5273e+00, 2.5391e+00, 8.7734e+00],
E [ 5.2734e-01, -7.7344e-01, 3.4102e+00, -1.5645e+00,
E -1.8193e+00, 7.9023e+00, 4.9375e+00, -4.0508e+00],
E [-3.4375e+00, -3.0410e+00, -6.1523e-02, -8.9375e+00,
E 3.2344e+00, 3.8672e-01, -5.9844e+00, 6.6445e+00],
E [-2.0117e+00, 3.2871e+00, 5.4297e+00, 2.2852e-01,
E 1.6875e+00, 8.1641e+00, -1.5469e+00, 3.1289e+00],
E [-8.4609e+00, 5.3613e-01, -5.3008e+00, 6.9688e+00,
E -3.4453e+00, -2.0469e+00, -4.1641e+00, 3.3320e+00],
E [ 2.4258e+00, -3.6836e+00, 3.7793e+00, 1.0020e+00,
E 6.0391e+00, 1.0547e+00, -4.3945e+00, 8.7500e+00]],
E
E [[-1.1074e+00, 3.6484e+00, -7.5781e+00, -2.0918e+00,
E -1.0107e+00, 6.0391e+00, -3.7793e-01, 2.9531e+00],
E [-5.6797e+00, 2.8398e+00, -7.4883e+00, -2.1973e-01,
E 6.9062e+00, -8.4453e+00, 8.7891e-01, 2.8203e+00],
E [-4.3945e-01, -8.4297e+00, 7.3984e+00, 4.8867e+00,
E 5.2578e+00, -4.9844e+00, 5.0781e+00, -5.0273e+00],
E [ 2.2676e+00, 8.2031e+00, 6.2930e+00, 3.7344e+00,
E -4.0430e-01, 8.2188e+00, -7.4453e+00, 8.1719e+00],
E [-6.5469e+00, -5.9844e+00, 1.4062e-01, -6.4062e+00,
E -7.2344e+00, -5.5371e-01, -2.9961e+00, 8.0703e+00],
E [ 6.7930e+00, 1.6963e+00, 1.3008e+00, -5.7109e+00,
E 7.7969e+00, -8.7031e+00, 3.2344e+00, -8.7500e+00]],
E
E [[-2.1973e+00, -7.0664e+00, -8.5469e+00, 8.1875e+00,
E -2.0566e+00, 3.0938e+00, 3.4375e+00, -8.3438e+00],
E [-4.6680e+00, 6.0391e+00, 4.5781e+00, 8.5625e+00,
E -7.9805e+00, -6.5469e+00, 6.4062e+00, 1.5293e+00],
E [-2.4531e+00, -6.6797e-01, -2.2930e+00, -6.4141e+00,
E -6.1523e-02, 3.9551e+00, 7.3203e+00, 4.5430e+00],
E [ 1.7578e-01, 6.3281e-01, -1.6084e+00, 3.0762e-01,
E 4.4453e+00, 7.8906e+00, 2.0391e+00, 6.3906e+00],
E [ 8.6250e+00, -4.6406e+00, -7.1992e+00, -5.2656e+00,
E 8.2656e+00, -8.6250e+00, 7.9102e-01, 8.1562e+00],
E [ 7.2695e+00, 4.1211e+00, -3.6914e+00, 4.0938e+00,
E 7.4688e+00, -5.0195e+00, 8.8281e+00, -3.7793e+00]],
E
E [[ 2.9180e+00, -4.5547e+00, -2.0312e+00, 4.1211e+00,
E -8.8281e+00, 1.9951e+00, 3.2969e+00, 1.1338e+00],
E [ 6.0312e+00, -3.5586e+00, -5.3711e+00, 6.9766e+00,
E 6.1523e-01, 3.5430e+00, 4.9297e+00, 5.3281e+00],
E [ 6.9453e+00, 3.4805e+00, -6.0469e+00, 5.6523e+00,
E 4.4297e+00, -1.0107e+00, -6.5820e+00, -1.1689e+00],
E [-8.8906e+00, 1.7578e-02, 8.6562e+00, 8.6562e+00,
E -4.1309e-01, 1.9600e+00, -4.4824e-01, -7.4688e+00],
E [ 7.8906e+00, 3.3750e+00, 5.2812e+00, 8.0781e+00,
E -6.8906e+00, -4.2031e+00, -8.8828e+00, 1.7051e+00],
E [ 3.4805e+00, 3.7793e+00, 2.6797e+00, 2.9258e+00,
E -2.6367e+00, 3.5938e+00, -8.9844e+00, -2.9355e+00]]],
E
E
E [[[ 4.8438e+00, 3.9648e+00, 5.9336e+00, 7.1875e+00,
E -2.4434e+00, -2.2500e+00, -1.3447e+00, -4.6562e+00],
E [-5.3438e+00, 3.4277e+00, 3.2695e+00, -3.4883e+00,
E 4.4824e-01, 3.2969e+00, 3.4629e+00, 8.1016e+00],
E [-3.5156e-02, -7.7617e+00, 7.4707e-01, 4.0703e+00,
E -8.6016e+00, -1.5908e+00, -1.4062e-01, 2.0820e+00],
E [-8.9219e+00, -3.1719e+00, -3.9727e+00, 8.8359e+00,
E 4.6484e+00, 5.2461e+00, -3.3047e+00, -9.8438e-01],
E [ 6.5117e+00, -3.3828e+00, -3.5938e+00, -2.8750e+00,
E -1.0195e+00, -7.4453e+00, -1.3711e+00, 4.3945e-02],
E [-1.5117e+00, -6.3125e+00, -4.1914e+00, -6.1328e+00,
E 3.1211e+00, 6.9609e+00, -5.5391e+00, -6.3711e+00]],
E
E [[ 4.6133e+00, -2.4258e+00, -6.5039e+00, -6.1094e+00,
E -8.5703e+00, 8.8516e+00, -2.2148e+00, 8.5000e+00],
E [ 5.4570e+00, 6.2227e+00, -5.6875e+00, 6.7070e+00,
E 5.2656e+00, -2.1973e-01, 7.2422e+00, 4.7188e+00],
E [-2.2070e+00, 1.2568e+00, 5.1855e-01, -1.3799e+00,
E 6.8477e+00, 6.5039e-01, -8.9844e+00, 5.0469e+00],
E [-2.4336e+00, 3.9297e+00, 8.4141e+00, 6.5039e+00,
E 7.9180e+00, -6.5938e+00, 4.6484e+00, 5.1953e+00],
E [-7.1172e+00, 5.9922e+00, 4.2539e+00, -6.1172e+00,
E -6.7656e+00, 3.3926e+00, -7.9023e+00, -2.2676e+00],
E [ 5.1250e+00, 4.8242e+00, 2.8398e+00, 1.7842e+00,
E 1.5029e+00, 6.4531e+00, -7.1016e+00, 2.1445e+00]],
E
E [[ 2.9453e+00, 6.1719e+00, 2.6094e+00, -1.6963e+00,
E -7.4102e+00, -6.0742e+00, -4.5156e+00, -5.6406e+00],
E [ 6.2930e+00, 7.6641e+00, 1.7402e+00, -6.0898e+00,
E 1.4414e+00, 2.1172e+00, -1.0986e+00, -3.3672e+00],
E [ 1.9863e+00, -3.4375e+00, 4.8789e+00, -5.0469e+00,
E -7.2852e+00, 7.6367e+00, 1.7842e+00, 8.5938e+00],
E [-4.9844e+00, -1.7139e+00, -6.7500e+00, 4.6406e+00,
E 2.3828e+00, -8.9297e+00, -2.3203e+00, -6.6797e-01],
E [ 1.7578e+00, 5.0977e-01, -1.2129e+00, -5.5547e+00,
E 5.7227e+00, 1.0371e+00, 4.8516e+00, -5.5000e+00],
E [ 7.3203e+00, -6.1016e+00, 2.3379e+00, 4.5625e+00,
E 6.1016e+00, -4.7891e+00, -7.8320e+00, 6.0820e+00]],
E
E [[-9.5801e-01, -7.9102e-01, -5.8906e+00, -3.8750e+00,
E 4.3672e+00, -3.5156e+00, 9.3164e-01, -6.4609e+00],
E [-1.7578e+00, -3.4805e+00, -5.2734e-02, -3.4531e+00,
E 1.2832e+00, -6.1328e+00, 3.6387e+00, -7.1641e+00],
E [ 2.5938e+00, 3.4883e+00, 8.9648e-01, -3.4180e+00,
E 6.6445e+00, 4.4570e+00, 7.8203e+00, -1.3799e+00],
E [ 1.8281e+00, 8.1875e+00, -5.2461e+00, -5.5547e+00,
E -1.7490e+00, -9.5801e-01, 9.4922e-01, 7.8047e+00],
E [-5.9492e+00, -8.5703e+00, -9.5801e-01, 9.1406e-01,
E 3.6836e+00, 3.2695e+00, 2.2852e-01, -5.0098e-01],
E [-1.9775e+00, 6.7500e+00, 2.3906e+00, -7.0312e-02,
E -3.3047e+00, 2.9805e+00, -6.3633e+00, 4.2109e+00]]],
E
E
E [[[ 7.3203e+00, 4.7734e+00, 4.8867e+00, 2.3203e+00,
E 4.7539e+00, 5.2305e+00, -7.5508e+00, -6.2305e+00],
E [-9.0000e+00, -4.3945e-02, 6.6797e+00, 2.2852e+00,
E -8.4531e+00, -4.7656e+00, 5.9336e+00, 2.8125e+00],
E [ 7.4258e+00, 1.7578e+00, -7.0586e+00, -7.6719e+00,
E -3.3477e+00, -3.5078e+00, 4.0508e+00, -7.1016e+00],
E [-7.2852e+00, 6.9609e+00, 1.7666e+00, -2.6367e-01,
E -8.7891e-02, -3.3223e+00, 2.0469e+00, 1.2305e+00],
E [-2.7852e+00, 4.3672e+00, 4.8672e+00, 4.9219e-01,
E 8.1797e+00, 4.4219e+00, 1.2393e+00, -2.6641e+00],
E [ 5.1250e+00, 6.4609e+00, 4.7266e+00, -3.3828e+00,
E -8.0781e+00, -7.5586e+00, -7.1172e+00, 6.1523e-01]],
E
E [[ 6.2852e+00, 5.8359e+00, 5.0781e+00, -8.2188e+00,
E 6.7773e+00, -1.3271e+00, 1.9951e+00, 6.8555e-01],
E [-3.6641e+00, -5.9414e+00, 7.3906e+00, 8.6094e+00,
E -1.1514e+00, -6.8477e+00, -6.6172e+00, 8.8438e+00],
E [-5.4688e+00, 5.8711e+00, 1.0107e+00, 3.8145e+00,
E 4.6484e+00, 3.8750e+00, 1.5029e+00, 8.9297e+00],
E [ 1.3184e-01, -5.6250e-01, 6.6016e+00, -1.1162e+00,
E 4.8340e-01, 5.1875e+00, 8.9648e-01, -6.5117e+00],
E [ 6.1875e+00, -4.4648e+00, -3.5781e+00, 2.4336e+00,
E 7.7695e+00, -3.6289e+00, -2.4180e+00, 2.3555e+00],
E [ 7.3125e+00, -5.4922e+00, 4.4141e+00, 8.7891e+00,
E -8.2500e+00, -6.1953e+00, 2.7246e-01, -6.0547e+00]],
E
E [[-8.5625e+00, 6.8555e-01, 6.1250e+00, -7.4805e+00,
E 8.3203e+00, 5.4219e+00, -4.6055e+00, 5.0469e+00],
E [-8.3438e+00, -6.2305e+00, 7.3125e+00, 3.2695e+00,
E 7.0312e-01, 7.6641e+00, 5.6172e+00, 6.1016e+00],
E [ 6.6250e+00, -2.8828e+00, -1.3184e-01, -2.5742e+00,
E 6.1523e-01, -4.9219e-01, -1.5029e+00, -3.1562e+00],
E [ 6.6445e+00, -3.2773e+00, 6.1523e-01, -8.6016e+00,
E 4.0430e-01, 5.1875e+00, 3.6992e+00, -7.6992e+00],
E [-1.0107e+00, 1.1338e+00, -5.0000e+00, 5.6094e+00,
E -1.3008e+00, 5.5391e+00, -5.1855e-01, 8.7500e+00],
E [-1.3711e+00, 4.4297e+00, -8.4375e-01, -8.7891e-03,
E -2.1094e-01, -2.2070e+00, -6.8633e+00, -4.8438e+00]],
E
E [[-5.6523e+00, 8.9648e-01, -4.7109e+00, 3.1641e-01,
E 5.7383e+00, 4.8164e+00, 4.5625e+00, 6.5234e+00],
E [ 2.9180e+00, -5.5195e+00, -6.4062e+00, -8.0703e+00,
E -1.4502e+00, -6.2402e-01, -4.3516e+00, 7.2422e+00],
E [ 7.2070e-01, -7.9980e-01, -6.4766e+00, 8.6250e+00,
E -2.8047e+00, 8.9531e+00, 4.0430e+00, -7.1172e+00],
E [ 2.4609e+00, -2.5742e+00, 8.3750e+00, 4.0234e+00,
E 7.0312e+00, -5.9844e+00, -7.3047e+00, -7.6211e+00],
E [-4.9219e+00, -8.0938e+00, -8.7109e+00, 8.8770e-01,
E -3.3926e+00, 6.3711e+00, -6.1523e+00, 8.2891e+00],
E [ 7.0938e+00, -2.9355e+00, -3.8047e+00, -7.7695e+00,
E -4.8438e+00, 2.6367e-01, -1.2393e+00, 8.2109e+00]]],
E
E
E [[[-8.4531e+00, 4.9141e+00, 7.5586e-01, -6.3359e+00,
E 5.2734e-01, -5.5273e+00, -6.0742e+00, 8.3594e+00],
E [-2.1016e+00, -5.3984e+00, -6.5117e+00, -4.9141e+00,
E -8.3047e+00, 6.0742e+00, -2.1172e+00, 6.6797e-01],
E [ 8.3750e+00, -2.5664e+00, 7.9453e+00, 6.9688e+00,
E 4.7383e+00, 3.1641e+00, -8.3281e+00, -4.5352e+00],
E [ 1.4326e+00, 7.0312e-02, 1.5293e+00, -4.9492e+00,
E 2.6895e+00, 5.1602e+00, -6.8555e+00, -7.9375e+00],
E [-7.3828e+00, -8.7266e+00, -2.3730e-01, 8.4531e+00,
E -2.3125e+00, -4.0078e+00, -6.2852e+00, 3.2617e+00],
E [ 5.7578e+00, -1.7139e+00, 5.2305e+00, -2.9004e-01,
E 4.8340e-01, -2.0566e+00, 2.3906e+00, -4.9297e+00]],
E
E [[-3.0508e+00, 4.0000e+00, -4.0430e-01, -3.1211e+00,
E 2.1797e+00, -2.8750e+00, -2.7246e-01, -8.3203e+00],
E [-4.3164e+00, -8.0625e+00, 2.3906e+00, -2.2930e+00,
E 8.9453e+00, -8.8750e+00, -5.7578e+00, 2.6641e+00],
E [ 5.8984e+00, -7.2070e+00, 8.6094e+00, 9.8438e-01,
E 5.9688e+00, -1.4062e+00, 2.2148e+00, -5.1328e+00],
E [ 1.6260e+00, -1.4590e+00, -7.0156e+00, -4.3672e+00,
E 5.8633e+00, -5.8984e+00, -3.5332e+00, 0.0000e+00],
E [ 4.8516e+00, 4.9141e+00, -8.6133e-01, 3.6836e+00,
E 5.4414e+00, 1.4062e+00, -7.5938e+00, -1.3535e+00],
E [ 1.1162e+00, 6.3359e+00, 1.3184e+00, -5.1055e+00,
E 6.7344e+00, 4.1328e+00, -4.9375e+00, 6.4062e+00]],
E
E [[ 2.5488e-01, -4.8516e+00, -4.1133e+00, -8.3047e+00,
E 3.3398e-01, -6.8984e+00, -4.1133e+00, -3.8242e+00],
E [ 2.9531e+00, 7.9727e+00, 7.5586e+00, 7.0234e+00,
E 8.3594e+00, 2.4531e+00, 1.0107e+00, -6.6445e+00],
E [ 8.9219e+00, 8.0391e+00, -6.0625e+00, -6.2656e+00,
E 4.5703e-01, 5.8887e-01, -2.9102e+00, -8.7109e+00],
E [ 6.9883e+00, 7.1797e+00, -5.6172e+00, -6.8203e+00,
E 9.6680e-01, 8.1738e-01, 3.5938e+00, 1.5645e+00],
E [ 4.0430e-01, -2.0312e+00, -1.5205e+00, -1.3271e+00,
E 5.3008e+00, -5.7031e+00, -2.6445e+00, 5.1484e+00],
E [ 7.8125e+00, -7.2344e+00, -5.0977e+00, 8.0703e+00,
E 8.1875e+00, -6.3984e+00, 2.6992e+00, 6.3438e+00]],
E
E [[-4.6758e+00, -6.0391e+00, 8.2969e+00, -8.9648e-01,
E 5.6680e+00, 7.3906e+00, 5.7129e-01, -2.0469e+00],
E [ 3.6992e+00, 4.7383e+00, 8.1094e+00, 5.5195e+00,
E 4.3242e+00, 7.7422e+00, 8.7734e+00, -5.5371e-01],
E [-6.2227e+00, -7.2949e-01, 7.3477e+00, -3.5078e+00,
E -8.3516e+00, 6.2656e+00, -7.5586e-01, -8.4922e+00],
E [-5.6172e+00, -8.8750e+00, 2.0215e+00, 5.4141e+00,
E 5.9414e+00, -7.2578e+00, 8.0391e+00, 3.1016e+00],
E [-8.7031e+00, -7.5859e+00, 6.6445e+00, -3.7793e-01,
E -1.9863e+00, -1.1426e+00, -4.8672e+00, -4.3438e+00],
E [ 8.4609e+00, -2.0469e+00, -1.5205e+00, 3.7090e+00,
E -5.9492e+00, -2.9102e+00, -7.9102e-01, -9.8438e-01]]]],
E dtype=float16),
E 'input_2': array([[[[-7.72 , 3.277 , 6.04 , -3.076 , 3.648 , -2.97 ,
E 4.332 , 4.906 ],
E [ 2.242 , -0.5713 , -2.98 , 0.8965 , -7.945 , -5.33 ,
E -5.934 , 5.766 ],
E [-8.64 , 3.217 , -8.75 , -0.5186 , 7.832 , -2.11 ,
E 8.58 , -8.88 ],
E [-0.923 , 8.37 , -1.819 , -1.758 , 4.254 , 1.652 ,
E -1.345 , -6.414 ],
E [ 1.6 , -1.415 , -4.19 , 7.742 , 0.3164 , -0.1494 ,
E 0.11426, 8.1 ],
E [-3.428 , -3.78 , 1.389 , 4.332 , 2.883 , -3.613 ,
E 7.453 , 0.7207 ]],
E
E [[ 4.88 , 5.09 , 4.914 , 4.992 , 5.15 , 0.1846 ,
E 1.151 , -4.92 ],
E [ 4. , 2.645 , -0.615 , -0.835 , 2.338 , -1.986 ,
E -5.54 , 1.046 ],
E [-6.848 , -4.016 , -8.67 , -6.855 , -8.83 , 0.958 ,
E 5.316 , -5.547 ],
E [ 3.594 , -0.334 , 5.688 , 6.523 , -8.94 , 3.895 ,
E -6.125 , 7.79 ],
E [-6.46 , 6.695 , -4.516 , -0.993 , -5.836 , 7.98 ,
E 5.258 , -2.715 ],
E [-7.086 , 8.984 , -5.44 , 8.71 , 8.93 , 8.97 ,
E -2.39 , -0.8965 ]],
E
E [[-1.696 , 6.758 , 5.45 , 6.742 , 8.72 , -2.031 ,
E 1.925 , -3.78 ],
E [-8.07 , -3.902 , -3.656 , 6.355 , 2.504 , 6.574 ,
E -8.94 , -1.925 ],
E [-7.348 , -8.3 , -8.06 , 2.812 , 5.08 , -2.98 ,
E -5.97 , 7.58 ],
E [-6.125 , -4.133 , 6.133 , -6.355 , -7.25 , -1.16 ,
E 3.674 , 0.334 ],
E [ 6.426 , -6.312 , 0.02637, 5.555 , 7.445 , 0.668 ,
E -4.895 , -7.438 ],
E [-3.34 , 7.227 , 6.504 , -6.582 , 1.327 , 1.433 ,
E 2.54 , 3.312 ]],
E
E [[-3.55 , -3.402 , 6.6 , 2.715 , -0.835 , 8.59 ,
E 8.016 , 3.41 ],
E [ 7.523 , 5.773 , 6.707 , -7.4 , 7.207 , 2.68 ,
E -8.375 , 1.916 ],
E [-2.69 , 1.512 , 5.73 , 2.383 , -2.629 , 4.105 ,
E -6.645 , 0.167 ],
E [-3.93 , -0.2637 , -1.846 , 4.414 , -7.72 , 3.762 ,
E 1.441 , -1.187 ],
E [-6.285 , -4.457 , -8.88 , -7.848 , 7.496 , -2.373 ,
E -5.15 , -2.479 ],
E [-2.504 , 5.914 , -2.021 , -6.695 , -3.357 , 8.28 ,
E 1.969 , -6.742 ]]],
E
E
E [[[ 2.047 , 2.945 , -5.414 , 7.27 , -0.4395 , 0.2021 ,
E -6.625 , 0.826 ],
E [-7.76 , 6.09 , 6.3 , -1.081 , -0.4482 , 0.703 ,
E -6.6 , -6.582 ],
E [ 7.75 , 8.414 , -4.92 , 1.819 , 2.594 , 0.334 ,
E 8.32 , -6.477 ],
E [ 1.081 , -1.31 , 8.51 , 2.479 , -1.292 , -7.426 ,
E 0.8438 , 1.67 ],
E [ 0.6416 , -5.08 , -2.11 , 4.36 , -4.08 , -4.754 ,
E -1.547 , -2.664 ],
E [-7.99 , -4.305 , 0.8525 , 2.875 , 7.98 , -5.43 ,
E 2.742 , 6.16 ]],
E
E [[-2.91 , 1.292 , 2.996 , -4.656 , -0.677 , -8.805 ,
E 0.914 , 5.92 ],
E [ 5.08 , 7.04 , 7.03 , -4.105 , 5.203 , -0.7383 ,
E 5.78 , 1.942 ],
E [-1.494 , 0.12305, -1.178 , 5.555 , -8.32 , 2.82 ,
E -1.916 , 2.11 ],
E [ 0.1494 , -2.258 , -5.02 , 3.885 , -0.8525 , -6.574 ,
E 3.719 , 4.176 ],
E [ 0.2285 , -4.492 , 7.594 , -4.93 , -1.916 , 8.625 ,
E -1.767 , -5.82 ],
E [ 3.357 , -2.408 , -4.395 , 3.348 , 1.608 , 1.696 ,
E 4.05 , -8.516 ]],
E
E [[ 2.012 , -4.71 , 0.2373 , 7.305 , 5.117 , -2.664 ,
E 8.43 , 1.608 ],
E [ 3.727 , 3.287 , 7.62 , -8.65 , 4.246 , -0.1846 ,
E -6.723 , -5.133 ],
E [-0.87 , -1.485 , -8.27 , -8.6 , -5.14 , 5.89 ,
E 7.516 , 4.555 ],
E [-0.3428 , 7.418 , 3.84 , -7.812 , 1.6 , 6.223 ,
E 1.503 , -1.02 ],
E [-1.441 , -2.082 , -3.824 , 8.15 , -0.6064 , -2.945 ,
E -4.273 , 1.046 ],
E [ 2.46 , 2.7 , -2.785 , 2.426 , 4.65 , -6.414 ,
E 6.875 , -8.55 ]],
E
E [[-1.925 , 3.79 , -8.555 , -2.61 , -8.375 , -8.766 ,
E -4.887 , 8.01 ],
E [-2.293 , -1.222 , -0.993 , -4.203 , 3.516 , -7.242 ,
E 6.68 , 5.36 ],
E [-1.802 , 8.69 , 8.77 , 4.086 , 5.723 , 5.22 ,
E -4.086 , 6.934 ],
E [-5.68 , 6.67 , 7.86 , 1.547 , 0.4482 , -8.31 ,
E 3.375 , -1.679 ],
E [ 5.055 , 0.06152, 1.872 , -8.79 , -5.055 , -2.258 ,
E -2.373 , 8.51 ],
E [ 4.008 , 4.043 , -7.27 , 0.8174 , 6.312 , 8.31 ,
E -5.168 , 4.625 ]]],
E
E
E [[[-2.945 , 8.49 , 3.312 , -3.85 , -8.09 , 7.074 ,
E 5.97 , 8.445 ],
E [-3.498 , 8.85 , 0.334 , -4.984 , -5.81 , 6.89 ,
E -7.82 , -5.723 ],
E [ 2.031 , -8.664 , 8.46 , 7.047 , -1.811 , -8.59 ,
E -8.695 , 7.305 ],
E [-8.17 , -0.3516 , 3.164 , 4.605 , 1.274 , 8.05 ,
E -5.773 , -8.44 ],
E [ 1.995 , -2.383 , 4.562 , 8.88 , -1.837 , 7.49 ,
E 4.867 , -2.363 ],
E [-7.418 , 4.395 , -3.762 , 1.354 , -2.092 , 4.695 ,
E -3.498 , 7.18 ]],
E
E [[ 3.814 , 7.117 , 0.8613 , -3.594 , 3.262 , 4.938 ,
E 3.172 , -8.02 ],
E [-5.027 , -2.363 , 1.477 , -3.875 , -7.79 , 7.445 ,
E -6.977 , 2.092 ],
E [-0.3604 , -6.785 , 8.61 , 3.824 , 8.07 , -4.08 ,
E 3.7 , 2.654 ],
E [-8.375 , 2.303 , 7.32 , -7.06 , 0.668 , -8.46 ,
E 4.133 , 1.371 ],
E [-1.925 , -7.91 , -2.496 , 7.48 , -7.594 , -4.254 ,
E -3.508 , 5.188 ],
E [ 4.695 , -8.08 , 1.143 , 3.129 , 8.92 , 8.69 ,
E 6.01 , -2.188 ]],
E
E [[ 7.496 , 7.77 , 6.996 , -8.99 , -6.96 , -5.766 ,
E 2.197 , -0.6943 ],
E [ 8.83 , 7.312 , 0.9404 , 2.418 , -7.426 , 6.363 ,
E -6.434 , -3.875 ],
E [-2.021 , -7.47 , -7.93 , -7.016 , 7.918 , -5.105 ,
E 7.137 , -5.246 ],
E [ 0.7207 , -2.285 , 5.773 , -3.453 , -8.44 , 2.46 ,
E 6.977 , 3.428 ],
E [-5.246 , -3.578 , -0.879 , 8.7 , -1.872 , -8.07 ,
E 4.81 , -3.217 ],
E [ 2.293 , 8.086 , 1.389 , -6.68 , 4.105 , 1.767 ,
E 8.19 , -7.65 ]],
E
E [[ 0.10547, 2.602 , -1.134 , 7.32 , 4.367 , 5.24 ,
E -0.2812 , 6.953 ],
E [-6.855 , 2.629 , 3.172 , 3.102 , 7.27 , 4.57 ,
E -5.617 , -2.338 ],
E [ 2.734 , -5.37 , 2.434 , 6.582 , -2.725 , -2.338 ,
E -2.443 , -3.797 ],
E [ 3.121 , 4.605 , -1.635 , -8.87 , -0.2812 , 0.3867 ,
E 2.812 , -3.287 ],
E [ 2.855 , -7.707 , -5.89 , 2.066 , -2.83 , -3.621 ,
E -8.086 , 4.156 ],
E [ 6.688 , -5.527 , 3.91 , -3.684 , 1.925 , 8.664 ,
E 7.11 , -1.529 ]]],
E
E
E [[[ 8.47 , -5.125 , 5.66 , -1.336 , -3.146 , 0.2373 ,
E -2.031 , -4.836 ],
E [-3.488 , 2.672 , 6.547 , 3.55 , 4.5 , -4.598 ,
E -5.95 , 2.102 ],
E [-0.06152, -4. , 7.438 , -2.9 , 2.953 , -8.78 ,
E 8.6 , 3.586 ],
E [ 0.668 , 8.16 , -7.1 , 2.875 , -1.652 , -2.207 ,
E 0.1934 , 6.637 ],
E [-3.121 , -2.7 , -6.285 , -3.744 , -6.664 , 3.639 ,
E -3.332 , 2.338 ],
E [ 2.918 , -0.01758, 6.848 , 8.91 , -5.055 , -4.043 ,
E 5.36 , 2.162 ]],
E
E [[ 0.3076 , 3.516 , -8.766 , -7.074 , -5.44 , 5.387 ,
E 6.805 , -6.625 ],
E [ 6.46 , 5.71 , -2.047 , 4.484 , -0.545 , 2.504 ,
E 3.98 , 6.688 ],
E [-1.679 , -6.223 , 5.176 , 2.602 , -6.04 , 2.69 ,
E 3.754 , -5.92 ],
E [-4.516 , -4.395 , 7.53 , -4.684 , 7.973 , 5.21 ,
E -8.93 , 4.36 ],
E [ 6.363 , 4.914 , -4.08 , 7.207 , -5.14 , 4.844 ,
E 7.68 , -2.047 ],
E [ 6.477 , 8.5 , 0.9404 , 2.145 , 2.232 , -8.72 ,
E 0.1934 , -1.582 ]],
E
E [[-4.035 , 7.207 , -8.58 , -4.95 , -3.824 , -6.055 ,
E 8.3 , 3.137 ],
E [ 1.063 , 3.895 , -5.85 , 5.28 , -5.97 , -7.312 ,
E 3.648 , 3.305 ],
E [ 4.062 , -2.363 , 5.8 , 1.274 , -4.81 , -1.731 ,
E -1.187 , -3.27 ],
E [-5.42 , -6.496 , 7.883 , -1.529 , -8.03 , -3.559 ,
E 7.72 , -2.04 ],
E [-8.57 , 0.11426, 1.169 , -3.84 , -3.77 , 3.006 ,
E -3.121 , 2.504 ],
E [ 8.2 , -6.25 , -3.684 , -6.4 , 5.316 , -4.008 ,
E 8.94 , 1.433 ]],
E
E [[-1.696 , 4.36 , -3.648 , -8.87 , 3.016 , 0.677 ,
E 3.031 , -8.375 ],
E [-6.637 , -6.484 , -8.43 , -1.274 , -8.414 , 1.6875 ,
E 0.4746 , -0.3955 ],
E [ 3.322 , -0.4482 , 1.468 , 3.586 , -4.543 , 4.71 ,
E 5.64 , -1.652 ],
E [ 0.8877 , -1.222 , -2.031 , 7.094 , 7.074 , -5.3 ,
E 8.46 , -2.197 ],
E [-4.81 , -0.87 , -7.953 , 8.03 , 6.523 , 2.549 ,
E -4.72 , 1.406 ],
E [ 5.906 , -8.32 , 0.3252 , 3.453 , -5.133 , 4.74 ,
E -4.95 , -3.629 ]]]], dtype=float16)}
E Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[4,4,3,8] input_0, float16[4,4,6,8] input_1, float16[4,4,6,8] input_2, float16[3,6] attn_mask) => (float16[4,4,3,8] _val_5)
E <float16 _val_4>
E {
E _val_4 = pkg.onnxscript.torch_lib._attention_scale (input_0)
E _val_5 = pkg.onnxscript.torch_lib._aten_scaled_dot_product_attention_float_mask_onnx <dropout_p: float = 0> (input_0, input_1, input_2, attn_mask, _val_4)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["" : 18]
E >
E _attention_scale (query) => (scale)
E {
E tmp = Shape (query)
E int64_m1 = Constant <value: tensor = int64 int64_m1 {-1}> ()
E tmp_subscripted = Gather <axis: int = 0> (tmp, int64_m1)
E embedding_size = CastLike (tmp_subscripted, query)
E const = Constant <value: tensor = float const {1}> ()
E tmp_0 = Sqrt (embedding_size)
E const_cast = CastLike (const, tmp_0)
E scale = Div (const_cast, tmp_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["" : 18]
E >
E _aten_scaled_dot_product_attention_float_mask_onnx <dropout_p>(query, key, value, attn_mask, scale) => (return_val)
E {
E key_shape = Shape (key)
E int64_0_1d = Constant <value: tensor = int64[1] int64_0_1d {0}> ()
E int64_1_1d = Constant <value: tensor = int64[1] int64_1_1d {1}> ()
E int64_m1_1d = Constant <value: tensor = int64[1] int64_m1_1d {-1}> ()
E int64_9223372036854775807_1d = Constant <value: tensor = int64[1] int64_9223372036854775807_1d {9223372036854775807}> ()
E key_last_dim = Slice (key_shape, int64_m1_1d, int64_9223372036854775807_1d, int64_0_1d, int64_1_1d)
E int64_0_1d_0 = Constant <value: tensor = int64[1] int64_0_1d_0 {0}> ()
E int64_1_1d_1 = Constant <value: tensor = int64[1] int64_1_1d_1 {1}> ()
E int64_m2_1d = Constant <value: tensor = int64[1] int64_m2_1d {-2}> ()
E int64_m1_1d_2 = Constant <value: tensor = int64[1] int64_m1_1d_2 {-1}> ()
E key_second_last_dim = Slice (key_shape, int64_m2_1d, int64_m1_1d_2, int64_0_1d_0, int64_1_1d_1)
E int64_0_1d_3 = Constant <value: tensor = int64[1] int64_0_1d_3 {0}> ()
E int64_1_1d_4 = Constant <value: tensor = int64[1] int64_1_1d_4 {1}> ()
E int64_m2_1d_5 = Constant <value: tensor = int64[1] int64_m2_1d_5 {-2}> ()
E key_first_dims = Slice (key_shape, int64_0_1d_3, int64_m2_1d_5, int64_0_1d_3, int64_1_1d_4)
E tmp = Constant <value_ints: ints = [-1]> ()
E key_squeezed_shape = Concat <axis: int = 0> (tmp, key_second_last_dim, key_last_dim)
E key_squeezed = Reshape (key, key_squeezed_shape)
E key_squeezed_transposed = Transpose <perm: ints = [0, 2, 1]> (key_squeezed)
E key_transposed_shape = Concat <axis: int = 0> (key_first_dims, key_last_dim, key_second_last_dim)
E key_transposed = Reshape (key_squeezed_transposed, key_transposed_shape)
E tmp_6 = Sqrt (scale)
E query_scaled = Mul (query, tmp_6)
E tmp_7 = Sqrt (scale)
E key_transposed_scaled = Mul (key_transposed, tmp_7)
E tmp_8 = MatMul (query_scaled, key_transposed_scaled)
E tmp_9 = Add (tmp_8, attn_mask)
E attn_weight = Softmax <axis: int = -1> (tmp_9)
E dropout_p = Constant <value_float: float = @dropout_p> ()
E attn_weight_10, _ = Dropout (attn_weight, dropout_p)
E return_val = MatMul (attn_weight_10, value)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
All 3 runs failed: test_output_match_opinfo__addmv_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!
Mismatched elements: 1 / 5 (20.0%)
Greatest absolute difference: 0.01171875 at index (1,) (up to 1e-05 allowed)
Greatest relative difference: 0.0018596649169921875 at index (1,) (up to 0.001 allowed)
onnxscript\tests\function_libs\torch_lib\ops_test.py:266: in run_test_output_match
torch.testing.assert_close(
E AssertionError: Tensor-likes are not close!
E
E Mismatched elements: 1 / 5 (20.0%)
E Greatest absolute difference: 0.01171875 at index (1,) (up to 1e-05 allowed)
E Greatest relative difference: 0.0018596649169921875 at index (1,) (up to 0.001 allowed)
github-actions / Test Results
All 3 runs failed: test_output_match_opinfo__log_softmax_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[5] input_0) => (float16[5] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 0, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[5,5] input_0) => (float16[5,5] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 0, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[5,5] input_0) => (float16[5,5] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 1, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[5,5] input_0) => (float16[5,5] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = -1, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[5,10,5] input_0) => (float16[5,10,5] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 2, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16[5,0,0] input_0) => (float16[5,0,0] _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = -1, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float16 input_0) => (float16 _val_1) {
_val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 0, dtype: int = 1> (input_0)
}
<
domain: "pkg.onnxscript.torch_lib",
opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
>
aten_special_log_softmax <dim>(self) => (result_6)
{
self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
tmp = Constant <value_ints: ints = [0]> ()
self_0 = Unsqueeze (self, tmp)
}, else_branch: graph = elseGraph_8 () => ( self_1) {
self_1 = Identity (self)
}>
result = LogSoftmax <axis: int = @dim> (self_2)
result_3 = Cast <to: int = @dtype> (result)
result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
result_4 = Squeeze (result_3)
}, else_branch: graph = elseGraph_12 () => ( result_5) {
result_5 = Identity (result_3)
}>
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[5] input_0) => (float16[5] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 0, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[5,5] input_0) => (float16[5,5] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 0, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[5,5] input_0) => (float16[5,5] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 1, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[5,5] input_0) => (float16[5,5] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = -1, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[5,10,5] input_0) => (float16[5,10,5] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 2, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16[5,0,0] input_0) => (float16[5,0,0] _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = -1, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_special_log_softmax, node name: aten_special_log_softmax_0): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (float16 input_0) => (float16 _val_1) {
E _val_1 = pkg.onnxscript.torch_lib.aten_special_log_softmax <dim: int = 0, dtype: int = 1> (input_0)
E }
E <
E domain: "pkg.onnxscript.torch_lib",
E opset_import: ["pkg.onnxscript.torch_lib.common" : 1,"" : 18]
E >
E aten_special_log_softmax <dim>(self) => (result_6)
E {
E self_is_scalar = pkg.onnxscript.torch_lib.common.IsScalar (self)
E self_2 = If (self_is_scalar) <then_branch: graph = thenGraph_8 () => ( self_0) {
E tmp = Constant <value_ints: ints = [0]> ()
E self_0 = Unsqueeze (self, tmp)
E }, else_branch: graph = elseGraph_8 () => ( self_1) {
E self_1 = Identity (self)
E }>
E result = LogSoftmax <axis: int = @dim> (self_2)
E result_3 = Cast <to: int = @dtype> (result)
E result_6 = If (self_is_scalar) <then_branch: graph = thenGraph_12 () => ( result_4) {
E result_4 = Squeeze (result_3)
E }, else_branch: graph = elseGraph_12 () => ( result_5) {
E result_5 = Identity (result_3)
E }>
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
github-actions / Test Results
All 3 runs failed: test_output_match_opinfo__linspace_tensor_overload_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)
artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 24s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 6s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 8s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[0] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {-3}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[50] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[50] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {-3}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[50] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[0] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {0}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[50] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[50] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {0}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[50] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[0] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {1}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[50] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[50] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {1}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[50] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {50}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0, int64 input_1) => (float16[0] _val_16)
<float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_2 = Constant <value: tensor = float {0}> ()
_val_3 = Cast <to: int = 1> (_val_2)
_val_4 = Constant <value: tensor = float {1}> ()
_val_5 = Cast <to: int = 1> (_val_4)
_val_6 = Cast <to: int = 1> (input_0)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_3, _val_9, _val_5)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_5)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (float input_0) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Cast <to: int = 1> (input_0)
_val_6 = Constant <value: tensor = int64 {4}> ()
_val_7 = Cast <to: int = 1> (_val_6)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_5, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
tmp = Shape (input)
tmp_0 = Size (tmp)
tmp_1 = Constant <value_int: int = 0> ()
return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
ir_version: 8,
opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
producer_name: "pytorch",
producer_version: "2.2.0"
>
main_graph (int64 input_1) => (float16[0] _val_16)
<float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
{
_val_1 = Constant <value: tensor = float {0}> ()
_val_2 = Cast <to: int = 1> (_val_1)
_val_3 = Constant <value: tensor = float {1}> ()
_val_4 = Cast <to: int = 1> (_val_3)
_val_5 = Constant <value: tensor = float {-2}> ()
_val_6 = Cast <to: int = 1> (_val_5)
_val_7 = Cast <to: int = 1> (input_1)
_val_8 = Constant <value: tensor = int64 {0}> ()
_val_9 = Cast <to: int = 1> (_val_8)
_val_10 = Range (_val_2, _val_9, _val_4)
_val_11 = CastLike (_val_6, _val_7)
_val_12 = Sub (_val_7, _val_11)
_val_13 = Sub (_val_9, _val_4)
_val_14 = Div (_val_12, _val_13)
_val_15 = Mul (_val_10, _val_14)
_val_16 = Add (_val_15, _val_11)
}
<
domain: "pkg.onnxscript.torch_lib.common",
opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
tmp = Shape (input)
return_val = Size (tmp)
}
<
domain:…r (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0) => (float16[0] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Cast <to: int = 1> (input_0)
E _val_6 = Constant <value: tensor = int64 {4}> ()
E _val_7 = Cast <to: int = 1> (_val_6)
E _val_8 = Constant <value: tensor = int64 {0}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_5, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_1) => (float16[0] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, int64 _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Constant <value: tensor = int64 {50}> ()
E _val_6 = Cast <to: int = 1> (_val_5)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {0}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_17): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0, int64 input_1) => (float16[50] _val_16)
E <float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_2 = Constant <value: tensor = float {0}> ()
E _val_3 = Cast <to: int = 1> (_val_2)
E _val_4 = Constant <value: tensor = float {1}> ()
E _val_5 = Cast <to: int = 1> (_val_4)
E _val_6 = Cast <to: int = 1> (input_0)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_3, _val_9, _val_5)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_5)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0) => (float16[50] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Cast <to: int = 1> (input_0)
E _val_6 = Constant <value: tensor = int64 {4}> ()
E _val_7 = Cast <to: int = 1> (_val_6)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_5, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_1) => (float16[50] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, int64 _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Constant <value: tensor = int64 {50}> ()
E _val_6 = Cast <to: int = 1> (_val_5)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_17): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0, int64 input_1) => (float16[0] _val_16)
E <float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_2 = Constant <value: tensor = float {0}> ()
E _val_3 = Cast <to: int = 1> (_val_2)
E _val_4 = Constant <value: tensor = float {1}> ()
E _val_5 = Cast <to: int = 1> (_val_4)
E _val_6 = Cast <to: int = 1> (input_0)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {0}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_3, _val_9, _val_5)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_5)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0) => (float16[0] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Cast <to: int = 1> (input_0)
E _val_6 = Constant <value: tensor = int64 {50}> ()
E _val_7 = Cast <to: int = 1> (_val_6)
E _val_8 = Constant <value: tensor = int64 {0}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_5, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_1) => (float16[0] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, int64 _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Constant <value: tensor = int64 {50}> ()
E _val_6 = Cast <to: int = 1> (_val_5)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {0}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_17): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0, int64 input_1) => (float16[50] _val_16)
E <float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_2 = Constant <value: tensor = float {0}> ()
E _val_3 = Cast <to: int = 1> (_val_2)
E _val_4 = Constant <value: tensor = float {1}> ()
E _val_5 = Cast <to: int = 1> (_val_4)
E _val_6 = Cast <to: int = 1> (input_0)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_3, _val_9, _val_5)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_5)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0) => (float16[50] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, float _val_5, int64 _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Cast <to: int = 1> (input_0)
E _val_6 = Constant <value: tensor = int64 {50}> ()
E _val_7 = Cast <to: int = 1> (_val_6)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_5, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_19): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_1) => (float16[50] _val_16)
E <float _val_1, float _val_2, float _val_3, float _val_4, int64 _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_1 = Constant <value: tensor = float {0}> ()
E _val_2 = Cast <to: int = 1> (_val_1)
E _val_3 = Constant <value: tensor = float {1}> ()
E _val_4 = Cast <to: int = 1> (_val_3)
E _val_5 = Constant <value: tensor = int64 {50}> ()
E _val_6 = Cast <to: int = 1> (_val_5)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_2, _val_9, _val_4)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_4)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
onnx.checker.check_model(onnx_model, full_check=True)
.nox\test_torch_nightly\lib\site-packages\onnx\checker.py:157: in check_model
C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:Add, node name: Add_17): [TypeInferenceError] Inferred elem type differs from existing elem type: (1) vs (10)
The above exception was the direct cause of the following exception:
onnxscript\tests\function_libs\torch_lib\ops_test.py:229: in run_test_output_match
function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript\tests\function_libs\torch_lib\ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
raise AssertionError(
E AssertionError: ONNX model is invalid. Model:
E <
E ir_version: 8,
E opset_import: ["" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E producer_name: "pytorch",
E producer_version: "2.2.0"
E >
E main_graph (int64 input_0, int64 input_1) => (float16[50] _val_16)
E <float _val_2, float _val_3, float _val_4, float _val_5, float _val_6, float _val_7, int64 _val_8, float _val_9, float[unk__0] _val_10, float _val_11, float _val_12, float _val_13, float _val_14, float[unk__0] _val_15>
E {
E _val_2 = Constant <value: tensor = float {0}> ()
E _val_3 = Cast <to: int = 1> (_val_2)
E _val_4 = Constant <value: tensor = float {1}> ()
E _val_5 = Cast <to: int = 1> (_val_4)
E _val_6 = Cast <to: int = 1> (input_0)
E _val_7 = Cast <to: int = 1> (input_1)
E _val_8 = Constant <value: tensor = int64 {50}> ()
E _val_9 = Cast <to: int = 1> (_val_8)
E _val_10 = Range (_val_3, _val_9, _val_5)
E _val_11 = CastLike (_val_6, _val_7)
E _val_12 = Sub (_val_7, _val_11)
E _val_13 = Sub (_val_9, _val_5)
E _val_14 = Div (_val_12, _val_13)
E _val_15 = Mul (_val_10, _val_14)
E _val_16 = Add (_val_15, _val_11)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E Rank (input) => (return_val)
E {
E tmp = Shape (input)
E return_val = Size (tmp)
E }
E <
E domain: "pkg.onnxscript.torch_lib.common",
E opset_import: ["" : 18]
E >
E IsScalar (input) => (return_val)
E {
E tmp = Shape (input)
E tmp_0 = Size (tmp)
E tmp_1 = Constant <value_int: int = 0> ()
E return_val = Equal (tmp_0, tmp_1)
E }