Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add op (std_mean, std_mean.dim, std_mean.correction) | feat(torchlib) #1748

Merged
merged 3 commits into from
Jul 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 42 additions & 2 deletions onnxscript/function_libs/torch_lib/ops/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -7891,10 +7891,50 @@ def aten_std_correction(
return op.Sqrt(var)


def aten_std_mean(self: TensorType, unbiased: bool = True) -> tuple[TensorType, TensorType]:
@torch_op("aten::std_mean", trace_only=True)
def aten_std_mean(self: TReal, unbiased: bool = True) -> Tuple[TReal, TReal]:
"""std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)"""

raise NotImplementedError()
# Assume bool(True) and int(1) are same in ONNX, so pass "unbiased" directly as "correction"
# If not this case, should be explicitly set correction value according to unbiased value
var, mean = _aten_var_mean_onnx(self, correction=float(unbiased), keepdim=False)
return op.Sqrt(var), mean


@torch_op("aten::std_mean.dim", trace_only=True)
def aten_std_mean_dim(
self: TReal, dim: Sequence[int], unbiased: bool = True, keepdim: bool = False
) -> Tuple[TReal, TReal]:
"""std_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)"""

# Although dim is Optional in signature, but we assume it must have value for this overload
# Assert(dim is not None)
var, mean = _aten_var_mean_dim_onnx(
self, dims=dim, correction=float(unbiased), keepdim=keepdim
)
return op.Sqrt(var), mean


@torch_op("aten::std_mean.correction", trace_only=True)
def aten_std_mean_correction(
self: TReal,
# FIXME(justinchuby): Make dim Optional[Sequence[int]]
dim: Optional[int] = None,
correction: Optional[float] = None,
keepdim: bool = False,
) -> Tuple[TReal, TReal]:
"""std_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)"""

if correction is None:
correction = 1.0

if dim is None:
var, mean = _aten_var_mean_onnx(self, correction=correction, keepdim=keepdim)
else:
var, mean = _aten_var_mean_dim_onnx(
self, dims=dim, correction=correction, keepdim=keepdim
)
return op.Sqrt(var), mean


@torch_op("aten::stft", private=True)
Expand Down
28 changes: 28 additions & 0 deletions tests/function_libs/torch_lib/ops_test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -1501,6 +1501,33 @@ def _where_input_wrangler(
),
TorchLibOpInfo("stack", core_ops.aten_stack),
TorchLibOpInfo("stack", core_ops.aten_stack_complex, complex=True),
TorchLibOpInfo(
"std_mean",
core_ops.aten_std_mean,
).xfail(
# kwargs is empty
matcher=lambda sample: len(sample.kwargs) > 0,
reason="this Aten overload only support input[0]=tensor and input[1]=bool as input without any kwargs",
),
TorchLibOpInfo(
"std_mean_dim",
core_ops.aten_std_mean_dim,
).xfail(
# kwargs["dim"] must exist, kwargs["correction"] must not exist
matcher=lambda sample: not (
sample.kwargs.get("dim", None) is not None
and sample.kwargs.get("correction", None) is None
),
reason="this Aten overload only support with 'dim' argument and without 'correction' argument",
),
TorchLibOpInfo(
"std_mean_correction",
core_ops.aten_std_mean_correction,
).skip(
# Don't accept input[1]=bool and 'correction' must be in kwargs
matcher=lambda sample: len(sample.args) > 0 or "correction" not in sample.kwargs,
reason="this Aten overload only support when correction attribute exists",
),
TorchLibOpInfo("sub", core_ops.aten_sub),
TorchLibOpInfo("sub", core_ops.aten_sub_complex, complex=True),
# TorchLibOpInfo("sym_size", core_ops.aten_sym_size), # no test case in OPS_DB
Expand Down Expand Up @@ -2322,6 +2349,7 @@ def _where_input_wrangler(
ops_test_common.duplicate_opinfo(OPS_DB, "ops.aten._softmax", ("ops.aten._softmax_half",))
ops_test_common.duplicate_opinfo(OPS_DB, "round", ("round_decimals",))
ops_test_common.duplicate_opinfo(OPS_DB, "squeeze", ("squeeze_dim",))
ops_test_common.duplicate_opinfo(OPS_DB, "std_mean", ("std_mean_dim", "std_mean_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "std", ("std_dim", "std_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "var_mean", ("var_mean_dim", "var_mean_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "var", ("var_dim", "var_correction"))
Expand Down
Loading