Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add op (std, std.dim, std.correction) | feat(torchlib) #1747

Merged
merged 4 commits into from
Jul 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 36 additions & 2 deletions onnxscript/function_libs/torch_lib/ops/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -7845,10 +7845,44 @@
return op.ConcatFromSequence(tensors, axis=dim, new_axis=1)


def aten_std(self: TensorType, unbiased: bool = True) -> TensorType:
@torch_op("aten::std", trace_only=True)
def aten_std(self: TReal, unbiased: bool = True) -> TReal:
"""std(Tensor self, bool unbiased=True) -> Tensor"""
var = _aten_var_onnx(self, correction=float(unbiased), keepdim=False)
return op.Sqrt(var)

Check warning on line 7852 in onnxscript/function_libs/torch_lib/ops/core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/function_libs/torch_lib/ops/core.py#L7851-L7852

Added lines #L7851 - L7852 were not covered by tests

raise NotImplementedError()

@torch_op("aten::std.dim", trace_only=True)
def aten_std_dim(
self: TReal,
dim: Sequence[int],
unbiased: Optional[bool] = True,
keepdim: Optional[bool] = False,
) -> TReal:
"""std.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor"""

var = _aten_var_dim_onnx(self, dims=dim, correction=float(unbiased), keepdim=keepdim)
return op.Sqrt(var)

Check warning on line 7865 in onnxscript/function_libs/torch_lib/ops/core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/function_libs/torch_lib/ops/core.py#L7864-L7865

Added lines #L7864 - L7865 were not covered by tests


@torch_op("aten::var.correction", trace_only=True)
def aten_std_correction(
self: TReal,
# FIXME(justinchuby): Make dim Optional[Sequence[int]]
dim: Optional[int] = None,
correction: Optional[float] = None,
keepdim: bool = False,
) -> TReal:
"""std.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor"""

if correction is None:
correction = 1.0

Check warning on line 7879 in onnxscript/function_libs/torch_lib/ops/core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/function_libs/torch_lib/ops/core.py#L7879

Added line #L7879 was not covered by tests

if dim is None:
var = _aten_var_onnx(self, correction=correction, keepdim=keepdim)

Check warning on line 7882 in onnxscript/function_libs/torch_lib/ops/core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/function_libs/torch_lib/ops/core.py#L7882

Added line #L7882 was not covered by tests
else:
var = _aten_var_dim_onnx(self, dims=dim, correction=correction, keepdim=keepdim)
return op.Sqrt(var)

Check warning on line 7885 in onnxscript/function_libs/torch_lib/ops/core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/function_libs/torch_lib/ops/core.py#L7884-L7885

Added lines #L7884 - L7885 were not covered by tests


def aten_std_mean(self: TensorType, unbiased: bool = True) -> tuple[TensorType, TensorType]:
Expand Down
28 changes: 28 additions & 0 deletions tests/function_libs/torch_lib/ops_test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -2146,6 +2146,33 @@ def _where_input_wrangler(
dtypes=(torch.float16,),
reason="RuntimeError: MKL FFT doesn't support tensors of type: Half",
),
TorchLibOpInfo(
"std",
core_ops.aten_std,
).xfail(
# kwargs must be empty
matcher=lambda sample: len(sample.kwargs) > 0,
reason="this Aten overload only support input[0]=tensor and input[1]=bool as input without any kwargs",
),
TorchLibOpInfo(
"std_dim",
core_ops.aten_std_dim,
).xfail(
# kwargs["dim"] must exist, kwargs["correction"] must not exist
matcher=lambda sample: not (
sample.kwargs.get("dim", None) is not None
and sample.kwargs.get("correction", None) is None
),
reason="this Aten overload only support with 'dim' argument and without 'correction' argument",
),
TorchLibOpInfo(
"std_correction",
core_ops.aten_std_correction,
).skip(
# Don't accept input[1]=bool and 'correction' must be in kwargs
matcher=lambda sample: len(sample.args) > 0 or "correction" not in sample.kwargs,
reason="this Aten overload only support when correction attribute exists",
),
TorchLibOpInfo(
"sum",
core_ops.aten_sum_dim_IntList,
Expand Down Expand Up @@ -2295,6 +2322,7 @@ def _where_input_wrangler(
ops_test_common.duplicate_opinfo(OPS_DB, "ops.aten._softmax", ("ops.aten._softmax_half",))
ops_test_common.duplicate_opinfo(OPS_DB, "round", ("round_decimals",))
ops_test_common.duplicate_opinfo(OPS_DB, "squeeze", ("squeeze_dim",))
ops_test_common.duplicate_opinfo(OPS_DB, "std", ("std_dim", "std_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "var_mean", ("var_mean_dim", "var_mean_correction"))
titaiwangms marked this conversation as resolved.
Show resolved Hide resolved
ops_test_common.duplicate_opinfo(OPS_DB, "var", ("var_dim", "var_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "view_as_complex", ("view_as_complex_copy",))
Expand Down
Loading