Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(deps): bump black from 23.10.1 to 23.11.0 in /requirements/lintrunner #1151

Closed

chore(deps): bump black in /requirements/lintrunner

9b92de3
Select commit
Loading
Failed to load commit list.
Sign in for the full log view
Closed

chore(deps): bump black from 23.10.1 to 23.11.0 in /requirements/lintrunner #1151

chore(deps): bump black in /requirements/lintrunner
9b92de3
Select commit
Loading
Failed to load commit list.
GitHub Actions / Test Results failed Nov 13, 2023 in 0s

53 fail, 2 737 skipped, 8 385 pass in 1h 10m 22s

         18 files         18 suites   1h 10m 22s ⏱️
  11 175 tests   8 385 ✔️     2 737 💤      53
159 894 runs  37 064 ✔️ 120 787 💤 2 043

Results for commit 9b92de3.

Annotations

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 13s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 13s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__ops_aten__softmax_half_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
Failed: Unexpected success
Unexpected success

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 10s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 11s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 13s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 19s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 14s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 11s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 18s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 4s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 4s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:354: in aten_all_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 11s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 3s]
Raw output
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:584: in executor
    return function(*args, **kwargs)
onnxscript/values.py:519: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:309: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
onnxscript/function_libs/torch_lib/ops/core.py:480: in aten_any_dim
    dims = op.Reshape(dim, op.Constant(value_ints=[-1]))
onnxscript/onnx_opset/_impl/opset14.py:909: in Reshape
    return op(*self._prepare_inputs(schema, data, shape), allowzero=allowzero)
onnxscript/values.py:297: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:196: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:510: in _eval
    return _call_ort(schema, inputs, attributes, closure)
onnxscript/evaluator.py:471: in _call_ort
    model, session_run_input, inputs = _prepare_model_and_inputs_for_eager(
onnxscript/evaluator.py:411: in _prepare_model_and_inputs_for_eager
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:411: in <listcomp>
    args = [_onnxscript_to_numpy_value(x) for x in args]
onnxscript/evaluator.py:377: in _onnxscript_to_numpy_value
    raise TypeError(
E   TypeError: Unexpected onnxscript value type '<class 'tuple'>'.Valid value types are 'Tensor | list[Tensor] | None | np.ndarray | list[np.ndarray]'

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 6s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64 input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64 input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int64 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64 input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64 input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int64[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16 input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16 input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32 input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32 input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 3s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16 input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16 input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float16[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_bool (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 6s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (bool[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__all_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 2s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 1s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_all_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (all_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_all_dim, node name: aten_all_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_all_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_all_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         all_true = ReduceMin <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (all_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_float32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (float[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

3 out of 9 runs failed: test_output_match_opinfo__any_dim_cpu_int32 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyFullGraphCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 1s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32 input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
AssertionError: ONNX model is invalid. Model:
<
   ir_version: 8,
   opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
   producer_name: "pytorch",
   producer_version: "2.2.0"
>
main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
   _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
}
<
  domain: "pkg.onnxscript.torch_lib",
  opset_import: ["" : 18]
>
aten_any_dim <dim>(self) => (result_2)
{
   tmp = Shape (self)
   self_rank = Size (tmp)
   int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
   int64_0_cast = CastLike (int64_0, self_rank)
   cond = Equal (self_rank, int64_0_cast)
   result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
      result = Cast <to: int = 9> (self)
   }, else_branch: graph = elseGraph_6 () => ( result_1) {
      self_bool = Cast <to: int = 9> (self)
      self_int = Cast <to: int = 7> (self_bool)
      dim = Constant <value_int: int = @dim> ()
      tmp_0 = Constant <value_ints: ints = [-1]> ()
      dims = Reshape (dim, tmp_0)
      any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
      result_1 = Cast <to: int = 9> (any_true)
   }>
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
Rank (input) => (return_val)
{
   tmp = Shape (input)
   return_val = Size (tmp)
}
<
  domain: "pkg.onnxscript.torch_lib.common",
  opset_import: ["" : 18]
>
IsScalar (input) => (return_val)
{
   tmp = Shape (input)
   tmp_0 = Size (tmp)
   tmp_1 = Constant <value_int: int = 0> ()
   return_val = Equal (tmp_0, tmp_1)
}
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32 input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,5] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,5] input_0) => (bool[1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,2,1,2] input_0) => (bool _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, 1, 2, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,2,1,2] input_0) => (bool[1,2,1,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [0, -1], keepdim: int = 1> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:522: in _capture_graph_and_evaluate_torch_script_evaluator
    onnx.checker.check_model(onnx_model, full_check=True)
.nox/test_torch_nightly/lib/python3.10/site-packages/onnx/checker.py:157: in check_model
    C.check_model(protobuf_string, full_check, skip_opset_compatibility_check)
E   onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] Inference error(s): (op_type:aten_any_dim, node name: aten_any_dim_0): [ShapeInferenceError] Inference error(s): (op_type:If, node name: n5): [ShapeInferenceError] Inference error(s): (op_type:Constant, node name: n2): [ShapeInferenceError] Attribute 'value_int' expect an integer.
E   (op_type:Reshape, node name: n4): [TypeInferenceError] Input 0 expected to have type but instead is null

The above exception was the direct cause of the following exception:
onnxscript/tests/function_libs/torch_lib/ops_test.py:229: in run_test_output_match
    function_output = function_executor(test_name, reference_torch_outputs)(
onnxscript/tests/function_libs/torch_lib/ops_test_common.py:524: in _capture_graph_and_evaluate_torch_script_evaluator
    raise AssertionError(
E   AssertionError: ONNX model is invalid. Model:
E   <
E      ir_version: 8,
E      opset_import: ["pkg.onnxscript.torch_lib" : 1, "" : 18, "pkg.onnxscript.torch_lib.common" : 1],
E      producer_name: "pytorch",
E      producer_version: "2.2.0"
E   >
E   main_graph (int32[3,2,1,2] input_0) => (bool[3,1] _val_1) {
E      _val_1 = pkg.onnxscript.torch_lib.aten_any_dim <dim: ints = [1, 3], keepdim: int = 0> (input_0)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib",
E     opset_import: ["" : 18]
E   >
E   aten_any_dim <dim>(self) => (result_2)
E   {
E      tmp = Shape (self)
E      self_rank = Size (tmp)
E      int64_0 = Constant <value: tensor = int64 int64_0 {0}> ()
E      int64_0_cast = CastLike (int64_0, self_rank)
E      cond = Equal (self_rank, int64_0_cast)
E      result_2 = If (cond) <then_branch: graph = thenGraph_6 () => ( result) {
E         result = Cast <to: int = 9> (self)
E      }, else_branch: graph = elseGraph_6 () => ( result_1) {
E         self_bool = Cast <to: int = 9> (self)
E         self_int = Cast <to: int = 7> (self_bool)
E         dim = Constant <value_int: int = @dim> ()
E         tmp_0 = Constant <value_ints: ints = [-1]> ()
E         dims = Reshape (dim, tmp_0)
E         any_true = ReduceMax <keepdims: int = @keepdim> (self_int, dims)
E         result_1 = Cast <to: int = 9> (any_true)
E      }>
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   Rank (input) => (return_val)
E   {
E      tmp = Shape (input)
E      return_val = Size (tmp)
E   }
E   <
E     domain: "pkg.onnxscript.torch_lib.common",
E     opset_import: ["" : 18]
E   >
E   IsScalar (input) => (return_val)
E   {
E      tmp = Shape (input)
E      tmp_0 = Size (tmp)
E      tmp_1 = Constant <value_int: int = 0> ()
E      return_val = Equal (tmp_0, tmp_1)
E   }

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

All 3 runs failed: test_output_match_opinfo__addcdiv_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!

Mismatched elements: 1 / 25 (4.0%)
Greatest absolute difference: 0.0001220703125 at index (0, 2) (up to 1e-05 allowed)
Greatest relative difference: 0.002079010009765625 at index (0, 2) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 2 / 25 (8.0%)
Greatest absolute difference: 0.001953125 at index (1, 1) (up to 1e-05 allowed)
Greatest relative difference: 0.0024089813232421875 at index (2, 4) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 1 / 25 (4.0%)
Greatest absolute difference: 0.00018310546875 at index (2, 4) (up to 1e-05 allowed)
Greatest relative difference: 0.00147247314453125 at index (2, 4) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 4 / 25 (16.0%)
Greatest absolute difference: 0.00341796875 at index (1, 2) (up to 1e-05 allowed)
Greatest relative difference: 0.0059967041015625 at index (1, 2) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 16 / 125 (12.8%)
Greatest absolute difference: 0.00390625 at index (4, 0, 4) (up to 1e-05 allowed)
Greatest relative difference: 0.01145172119140625 at index (3, 1, 0) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 17 / 125 (13.6%)
Greatest absolute difference: 0.005859375 at index (2, 4, 3) (up to 1e-05 allowed)
Greatest relative difference: 0.03094482421875 at index (2, 2, 1) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 1 / 25 (4.0%)
E   Greatest absolute difference: 0.0001220703125 at index (0, 2) (up to 1e-05 allowed)
E   Greatest relative difference: 0.002079010009765625 at index (0, 2) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 2 / 25 (8.0%)
E   Greatest absolute difference: 0.001953125 at index (1, 1) (up to 1e-05 allowed)
E   Greatest relative difference: 0.0024089813232421875 at index (2, 4) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 1 / 25 (4.0%)
E   Greatest absolute difference: 0.00018310546875 at index (2, 4) (up to 1e-05 allowed)
E   Greatest relative difference: 0.00147247314453125 at index (2, 4) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 4 / 25 (16.0%)
E   Greatest absolute difference: 0.00341796875 at index (1, 2) (up to 1e-05 allowed)
E   Greatest relative difference: 0.0059967041015625 at index (1, 2) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 16 / 125 (12.8%)
E   Greatest absolute difference: 0.00390625 at index (4, 0, 4) (up to 1e-05 allowed)
E   Greatest relative difference: 0.01145172119140625 at index (3, 1, 0) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 17 / 125 (13.6%)
E   Greatest absolute difference: 0.005859375 at index (2, 4, 3) (up to 1e-05 allowed)
E   Greatest relative difference: 0.03094482421875 at index (2, 2, 1) (up to 0.001 allowed)

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

All 3 runs failed: test_output_match_opinfo__addmv_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!

Mismatched elements: 1 / 5 (20.0%)
Greatest absolute difference: 0.01171875 at index (1,) (up to 1e-05 allowed)
Greatest relative difference: 0.0018596649169921875 at index (1,) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 1 / 5 (20.0%)
Greatest absolute difference: 0.0078125 at index (2,) (up to 1e-05 allowed)
Greatest relative difference: 0.0015964508056640625 at index (2,) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 1 / 5 (20.0%)
E   Greatest absolute difference: 0.01171875 at index (1,) (up to 1e-05 allowed)
E   Greatest relative difference: 0.0018596649169921875 at index (1,) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 1 / 5 (20.0%)
E   Greatest absolute difference: 0.0078125 at index (2,) (up to 1e-05 allowed)
E   Greatest relative difference: 0.0015964508056640625 at index (2,) (up to 0.001 allowed)

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

All 3 runs failed: test_output_match_opinfo__addbmm_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!

Mismatched elements: 15 / 50 (30.0%)
Greatest absolute difference: 0.125 at index (1, 8) (up to 1e-05 allowed)
Greatest relative difference: 0.013641357421875 at index (4, 1) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 9 / 50 (18.0%)
Greatest absolute difference: 0.125 at index (1, 4) (up to 1e-05 allowed)
Greatest relative difference: 0.038482666015625 at index (1, 2) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 10 / 50 (20.0%)
Greatest absolute difference: 0.03125 at index (1, 5) (up to 1e-05 allowed)
Greatest relative difference: 0.0104827880859375 at index (0, 8) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 10 / 50 (20.0%)
Greatest absolute difference: 0.0234375 at index (4, 2) (up to 1e-05 allowed)
Greatest relative difference: 0.02459716796875 at index (1, 2) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 13 / 50 (26.0%)
Greatest absolute difference: 0.125 at index (2, 6) (up to 1e-05 allowed)
Greatest relative difference: 0.0292816162109375 at index (4, 7) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 12 / 50 (24.0%)
Greatest absolute difference: 0.01171875 at index (1, 1) (up to 1e-05 allowed)
Greatest relative difference: 0.041351318359375 at index (0, 7) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 15 / 50 (30.0%)
E   Greatest absolute difference: 0.125 at index (1, 8) (up to 1e-05 allowed)
E   Greatest relative difference: 0.013641357421875 at index (4, 1) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 9 / 50 (18.0%)
E   Greatest absolute difference: 0.125 at index (1, 4) (up to 1e-05 allowed)
E   Greatest relative difference: 0.038482666015625 at index (1, 2) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 10 / 50 (20.0%)
E   Greatest absolute difference: 0.03125 at index (1, 5) (up to 1e-05 allowed)
E   Greatest relative difference: 0.0104827880859375 at index (0, 8) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 10 / 50 (20.0%)
E   Greatest absolute difference: 0.0234375 at index (4, 2) (up to 1e-05 allowed)
E   Greatest relative difference: 0.02459716796875 at index (1, 2) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 13 / 50 (26.0%)
E   Greatest absolute difference: 0.125 at index (2, 6) (up to 1e-05 allowed)
E   Greatest relative difference: 0.0292816162109375 at index (4, 7) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 12 / 50 (24.0%)
E   Greatest absolute difference: 0.01171875 at index (1, 1) (up to 1e-05 allowed)
E   Greatest relative difference: 0.041351318359375 at index (0, 7) (up to 0.001 allowed)

Check warning on line 0 in onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU

See this annotation in the file changed.

@github-actions github-actions / Test Results

All 3 runs failed: test_output_match_opinfo__nn_functional_linear_bias_cpu_float16 (onnxscript.tests.function_libs.torch_lib.ops_test.TestOutputConsistencyEagerCPU)

artifacts/Test Results (py310-torch-nightly-macos-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-ubuntu-latest)/pytest.xml [took 0s]
artifacts/Test Results (py310-torch-nightly-windows-latest)/pytest.xml [took 0s]
Raw output
AssertionError: Tensor-likes are not close!

Mismatched elements: 2 / 32 (6.2%)
Greatest absolute difference: 0.000579833984375 at index (0, 0) (up to 1e-05 allowed)
Greatest relative difference: 0.00948333740234375 at index (0, 0) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 2 / 24 (8.3%)
Greatest absolute difference: 0.00048828125 at index (0, 2, 1) (up to 1e-05 allowed)
Greatest relative difference: 0.002288818359375 at index (0, 0, 1) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 4 / 64 (6.2%)
Greatest absolute difference: 0.00048828125 at index (2, 2) (up to 1e-05 allowed)
Greatest relative difference: 0.2337646484375 at index (3, 7) (up to 0.001 allowed)
AssertionError: Tensor-likes are not close!

Mismatched elements: 4 / 48 (8.3%)
Greatest absolute difference: 0.0009765625 at index (0, 1, 2) (up to 1e-05 allowed)
Greatest relative difference: 0.00658416748046875 at index (0, 2, 2) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 2 / 32 (6.2%)
E   Greatest absolute difference: 0.000579833984375 at index (0, 0) (up to 1e-05 allowed)
E   Greatest relative difference: 0.00948333740234375 at index (0, 0) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 2 / 24 (8.3%)
E   Greatest absolute difference: 0.00048828125 at index (0, 2, 1) (up to 1e-05 allowed)
E   Greatest relative difference: 0.002288818359375 at index (0, 0, 1) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 4 / 64 (6.2%)
E   Greatest absolute difference: 0.00048828125 at index (2, 2) (up to 1e-05 allowed)
E   Greatest relative difference: 0.2337646484375 at index (3, 7) (up to 0.001 allowed)
onnxscript/tests/function_libs/torch_lib/ops_test.py:266: in run_test_output_match
    torch.testing.assert_close(
E   AssertionError: Tensor-likes are not close!
E   
E   Mismatched elements: 4 / 48 (8.3%)
E   Greatest absolute difference: 0.0009765625 at index (0, 1, 2) (up to 1e-05 allowed)
E   Greatest relative difference: 0.00658416748046875 at index (0, 2, 2) (up to 0.001 allowed)