Skip to content

Commit

Permalink
[IR] Create documentation for tensors (#1481)
Browse files Browse the repository at this point in the history
Document the TensorProtocol and the various tensor classes. When we
create a helper function to create tensors in the IR, we should document
that as well.
  • Loading branch information
justinchuby authored May 5, 2024
1 parent bca6a64 commit e0e96d8
Show file tree
Hide file tree
Showing 5 changed files with 330 additions and 0 deletions.
1 change: 1 addition & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
extensions = [
"myst_parser",
"sphinx_copybutton",
"sphinx_exec_code",
"sphinx_gallery.gen_gallery",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
Expand Down
1 change: 1 addition & 0 deletions docs/intermediate_representation/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,6 @@
```{toctree}
:maxdepth: 1
tensors
ir_api
```
322 changes: 322 additions & 0 deletions docs/intermediate_representation/tensors.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
# Tensor Representation in the IR

The ONNX IR offers the {py:class}`ir.TensorProtocol <onnxscript.ir.TensorProtocol>` interface for usings different data structures as backing data for tensors. Besides the traditional {py:class}`onnx.TensorProto`, you can also use {py:class}`np.ndarray`, {py:class}`torch.Tensor`, {py:class}`jax.Array`, and virtually anything else to represent tensors in the graph. This allows for them to be accessed and serialized via the same `TensorProtocol` interface, without incurring additional copies at initialization.

## The `TensorProtocol`

{py:class}`ir.TensorProtocol <onnxscript.ir.TensorProtocol>` defines a read-only interface for representing tensors. A tensor class implementing the interface has attributes like `name`, `shape`, `dtype`, `size`, `nbytes` and `metadata_props` to describe basic properties of the tensor. Additionally, it should implement two methods {py:meth}`numpy <onnxscript.ir.TensorProtocol.numpy>` and {py:meth}`__array__ <onnxscript.ir.TensorProtocol.__array__>` which will produce equivalent NumPy arrays from the backing data.

:::{note}
When interacting with initializers, constant values and tensor attributes, it is best to assume `TensorProtocol` and only use `isinstance` to check for concrete classes when there is a need.
:::

## Tensor Classes

### ir.TensorProtoTensor

The ONNX spec defines [different ways](https://github.com/onnx/onnx/blob/d6f87121ba256ac6cc4d1da0463c300c278339d2/onnx/onnx.proto#L567-L654) for storing tensor data as an {py:class}`onnx.TensorProto <onnx.ir.TensorProtocol>` protocol buffer message. The IR has corresponding classes for each of these data storage methods.

We use the {py:class}`ir.TensorProtoTensor <onnxscript.ir.TensorProtoTensor>` as a wrapper around the proto to implement the `ir.TensorProtocol` interface. You can access `shape`, `dtype` etc. as usual. A copy is incurred only when `numpy()` is called.

:::{note}
Directly initializing an `ir.TensorProtoTensor`, as below, is possible. However, it is usually recommended to use `ir.serde.deserialize_tensor` because it handles all types of `TensorProto`s (`ir.TensorProtoTensor` doesn't handle external tensors, for example). Please refer to [From `TensorProto`s and back](#from-tensorprotos-and-back) for an example.
:::

```{eval-rst}
.. exec_code::
import onnx
from onnxscript import ir
tensor_proto = onnx.helper.make_tensor("tensor", onnx.TensorProto.INT16, (3,), [1, 2, 3])
tensor = ir.TensorProtoTensor(tensor_proto)
print("tensor: ", tensor) # TensorProtoTensor<INT16,[3]>(name='tensor')
print("shape: ", tensor.shape) # ir.Shape([3])
print("dtype: ", tensor.dtype) # ir.DataType.INT16
print(tensor.raw == tensor_proto) # The raw field is the exact tensor_proto provided at initialization
print("tobytes: ", tensor.tobytes()) # b'\x01\x00\x02\x00\x03\x00'
print("numpy: ", tensor.numpy()) # array([1, 2, 3], dtype=int16)
```

### ir.ExternalTensor

Tensor data stored externally in the disk are typically large and will take up memory when loaded. The {py:class}`ir.ExternalTensor <onnxscript.ir.ExternalTensor>` class uses memory mapping to avoid loading the tensor into memory. You are able to use the tensor as a normal NumPy array with minimal memory usage.

Refer to {py:func}`ir.serde.deserialize_tensor <onnxscript.ir.serde.deserialize_tensor>` to find an example on converting an `onnx.TensorProto` to an {py:class}`ir.ExternalTensor <onnxscript.ir.ExternalTensor>`.

### ir.Tensor

{py:class}`ir.Tensor <onnxscript.ir.Tensor>` is a wrapper around NumPy array compatible array objects like {py:class}`np.ndarray` and {py:class}`torch.Tensor`. It is best for creating in-memory tensors without converting it to a `TensorProto` to reduce the conversion overhead.

:::{tip}
An array object is compatible if it defines the `__array__` method.
:::

To create a tensor from an array, simply initialize it with an NumPy array

```python
tensor = ir.Tensor(np.random.rand(1, 2))
```

The initializer will obtain dtype and shape information from the array.

To create a tensor from objects other than NumPy array, you need to specify the dtype:

```{eval-rst}
.. exec_code::
import torch
from onnxscript import ir
torch_tensor = torch.tensor([1, 2, 3], dtype=torch.float16)
tensor = ir.Tensor(torch_tensor, dtype=ir.DataType.FLOAT16)
print(tensor.numpy()) # array([1., 2., 3.], dtype=float16)
```

### String Tensor

Use {py:class}`ir.StringTensor <onnxscript.ir.StringTensor>` to create a string tensor.

<!-- TODO(justinchuby): Document make tensor helper -->

### Sparse Tensor

Sparse tensors are not yet supported, but they are on our roadmap.

## From `TensorProto`s and back

In the following scenario, we show how to go from a `TensorProto` to an `ir.Tensor`, run some computation, then turn it back to an `ir.Tensor` and finally `TensorProto`

```{eval-rst}
.. exec_code::
from onnxscript import ir
import onnx
import numpy as np
# 1. Create the TensorProto
proto = onnx.helper.make_tensor(
"tensor", onnx.TensorProto.FLOAT16, [2, 3], [1, 2, 3, 4, 5, 6]
)
# 2. Create an IR Tensor from the Protobuf message
tensor = ir.serde.deserialize_tensor(proto)
# Note that we get a TensorProtoTensor that implements the TensorProtocol
print("tensor:", tensor) # TensorProtoTensor<FLOAT16,[2,3]>(name='tensor')
print("tensor.numpy():", tensor.numpy()) # [[1. 2. 3.]
# [4. 5. 6.]]
print("tensor.tobytes():", tensor.tobytes()) # b'\x00<\x00@\x00B\x00D\x00E\x00F'
# 3. Do computation using numpy
mean = tensor.numpy().mean(axis=0)
print("mean:", mean) # array([2.5, 3.5, 4.5], dtype=float16)
# 4. Create a Tensor from the ndarray. Note that we use ir.Tensor
tensor_mean = ir.Tensor(mean)
print("tensor_mean:", tensor_mean) # Tensor<FLOAT16,[3]>(array([2.5, 3.5, 4.5], dtype=float16), name='')
# 5. Obtain the TensorProto from ir.Tensor
mean_tensor_proto: onnx.TensorProto = ir.serde.serialize_tensor(tensor_mean)
print("mean_tensor_proto:", mean_tensor_proto)
print(
"onnx.numpy_helper.to_array(mean_tensor_proto):",
onnx.numpy_helper.to_array(mean_tensor_proto)
# array([2.5, 3.5, 4.5], dtype=float16)
)
# You can obtain the bytes data as well
print("tensor_mean.tobytes():", tensor_mean.tobytes())
print("Bytes same as proto:", mean_tensor_proto.raw_data == tensor_mean.tobytes())
# Explore other methods defined by TensorProtocol:
print("\n# Explore other methods defined by TensorProtocol:")
print("tensor_mean.shape:", tensor_mean.shape)
print("tensor_mean.dtype:", tensor_mean.dtype)
print("tensor_mean.name:", tensor_mean.name)
print("tensor_mean.doc_string:", tensor_mean.doc_string)
print("tensor_mean.raw:", tensor_mean.raw)
print("tensor_mean.metadata_props:", tensor_mean.metadata_props)
print("tensor_mean.size:", tensor_mean.size)
print("tensor_mean.nbytes:", tensor_mean.nbytes)
print("tensor_mean.raw:", tensor_mean.raw)
print("\nUse the display() method to view the tensor")
tensor_mean.display()
```

## Working with non-native NumPy dtypes: bfloat16, float8, int4

`ir.Tensor.numpy()` produces a NumPy array representation of the tensor's value. When the tensor has dtype `BFLOAT16`, `FLOAT8[...]` or `[U]INT4` which are not supported by NumPy, the value is the bit representation for the dtype:

- `int8` for (unpacked) int4, with the sign bit extended to 8 bits.
- `uint8` for (unpacked) uint4.
- `uint8` for 8-bit data types like float8.
- `uint16` for bfloat16.

uint4/int4 is always unpacked; `tobyte()` produces a packed representation as expected.

Initialization of `ir.Tensor` requires the NumPy array to follow these typing constraints as well.

:::{tip}
You can use the [ml_dtypes package](https://github.com/jax-ml/ml_dtypes) to extend NumPy and work with these values.

```bash
pip install --upgrade ml_dtypes
```

:::

The following example shows how to create a `FLOAT8E4M3FN` tensor, transform its values, and create a new tensor to store the transformed values.

```{eval-rst}
.. exec_code::
from onnxscript import ir
import numpy as np
array = np.array([0b1, 0b11], dtype=np.uint8)
tensor = ir.Tensor(array, dtype=ir.DataType.FLOAT8E4M3FN)
print(tensor) # Tensor<FLOAT8E4M3FN,[2]>(array([1, 3], dtype=uint8), name='')
print("tensor.numpy():", tensor.numpy()) # array([1, 3], dtype=uint8)
# You can use the ml_dtypes package to work with these values in NumPy
import ml_dtypes
float8_array = tensor.numpy().view(ml_dtypes.float8_e4m3fn)
print("float8_array:", float8_array) # array([0.00195312, 0.00585938], dtype='float8_e4m3fn')
# Compute
times_100 = float8_array * 100
print("times_100:", times_100)
# Create a new tensor out of the new value; dtype must be specified
new_tensor = ir.Tensor(times_100.view(np.uint8), dtype=ir.DataType.FLOAT8E4M3FN)
print("new_tensor:", new_tensor) # Tensor<FLOAT8E4M3FN,[2]>(array([36, 49], dtype=uint8), name='')
print("new_tensor == times_100", new_tensor.numpy().view(ml_dtypes.float8_e4m3fn) == times_100) # array([ True, True])
```

## Advanced Usage

### Subclass ir.Tensor for More Efficient Access and Broader dtype Support

{py:class}`ir.Tensor` internally converts any array compatible objects into NumPy arrays to produce the byte representation in `tobytes()`. This can be inefficient due to the additional conversion. It also limits support for dtypes not supported by NumPy like bfloat16, because the `__array__` method would fail.

To fully support arrays from other frameworks, it is usually a good idea to create specialized classes to handle them. The `TorchTensor` class below demonstrates how you can subclass `ir.Tensor` to handle PyTorch tensors:

```{eval-rst}
.. exec_code::
import ctypes
from typing import Any
import torch
from onnxscript import ir
# Define utilities to convert PyTorch data types so users do not need to specify manually
_TORCH_DTYPE_TO_ONNX: dict[torch.dtype, ir.DataType] = {
torch.bfloat16: ir.DataType.BFLOAT16,
torch.bool: ir.DataType.BOOL,
torch.complex128: ir.DataType.COMPLEX128,
torch.complex64: ir.DataType.COMPLEX64,
torch.float16: ir.DataType.FLOAT16,
torch.float32: ir.DataType.FLOAT,
torch.float64: ir.DataType.DOUBLE,
torch.float8_e4m3fn: ir.DataType.FLOAT8E4M3FN,
torch.float8_e4m3fnuz: ir.DataType.FLOAT8E4M3FNUZ,
torch.float8_e5m2: ir.DataType.FLOAT8E5M2,
torch.float8_e5m2fnuz: ir.DataType.FLOAT8E5M2FNUZ,
torch.int16: ir.DataType.INT16,
torch.int32: ir.DataType.INT32,
torch.int64: ir.DataType.INT64,
torch.int8: ir.DataType.INT8,
torch.uint8: ir.DataType.UINT8,
}
def _torch_dtype_to_onnx_dtype(dtype: torch.dtype) -> ir.DataType:
return _TORCH_DTYPE_TO_ONNX[dtype]
class TorchTensor(ir.Tensor):
def __init__(self, tensor: torch.Tensor):
# Pass the tensor as the raw data to ir.Tensor's constructor
super().__init__(tensor, dtype=_torch_dtype_to_onnx_dtype(tensor.dtype))
def __array__(self, dtype: Any = None) -> "np.ndarray":
# numpy() calls __array__ in ir.Tensor
if self.dtype == ir.DataType.BFLOAT16:
return self.raw.view(torch.uint16).__array__(dtype)
if self.dtype in {
ir.DataType.FLOAT8E4M3FN,
ir.DataType.FLOAT8E4M3FNUZ,
ir.DataType.FLOAT8E5M2,
ir.DataType.FLOAT8E5M2FNUZ
}:
return self.raw.view(torch.uint8).__array__(dtype)
return self.raw.__array__(dtype)
def tobytes(self) -> bytes:
# Implement tobytes to support native PyTorch types so we can use types like bloat16
# Reading from memory directly is also more efficient because
# it avoids the copy to NumPy array
tensor = self.raw.detach().cpu().contiguous()
return bytes(
(ctypes.c_ubyte * tensor.element_size() * tensor.numel()).from_address(
tensor.data_ptr()
)
)
# Test the implementation
torch_tensor = torch.tensor([1,2,3], dtype=torch.bfloat16)
tensor = TorchTensor(torch_tensor)
print("tensor: ", tensor)
print("numpy: ", tensor.numpy())
print("tobytes: ", tensor.tobytes()) # b'\x80?\x00@@@'
print("nbytes: ", tensor.nbytes) # 6
```

The `TorchTensor` class above implements `tobytes()` to produce the correct bytes representation for the tensor when it is serialized into an ONNX file / TensorProto. The class also implements the `__array__()` method to return the bit representation for types NumPy does not support. This way analysis passes can still perform computation on these values.

### Computation with different Frameworks

Since `ir.Tensor` implements the `__array__` method and `__dlpack__` methods, its content can be shared with computation frameworks without copying. For example:

```{eval-rst}
.. exec_code::
from onnxscript import ir
# We can call numpy methods directly on ir.Tensor
import numpy as np
print(np.multiply(ir.Tensor(np.array([1, 2])), 42)) # array([42., 84.])
# We can transfer arrays to different frameworks
import jax.numpy as jnp
import jax
import torch
# Create ir.Tensor
jax_array = jnp.array([10., 20.])
ir_tensor_jax = ir.Tensor(jax_array, dtype=ir.DataType.FLOAT)
torch_tensor = torch.tensor([30., 40.])
ir_tensor_torch = ir.Tensor(torch_tensor, dtype=ir.DataType.FLOAT)
# Use numpy for computation
print(np.multiply(ir_tensor_jax, ir_tensor_torch)) # array([300., 800.], dtype=float32)
# Use jax for computation by calling from_dlpack to transfer the tensor data without copying when the device is the same
jax_array_from_ir = jax.dlpack.from_dlpack(ir_tensor_torch)
print(jax_array_from_ir + jax_array) # [40. 60.]
# Use PyTorch for computation
torch_tensor_from_ir = torch.from_dlpack(ir_tensor_jax)
print(torch_tensor_from_ir - torch_tensor) # tensor([-20., -20.])
# They can all be serialized into TensorProto
proto = ir.serde.serialize_tensor(ir_tensor_jax)
print(type(proto)) # <class 'onnx.onnx_ml_pb2.TensorProto'>
print(proto)
# The value is exactly the same as jax_array
print(ir.serde.deserialize_tensor(proto).numpy()) # [10. 20.]
```

This is particularly useful if you are creating passes on the graph that requires doing computation on concrete values. You are free to use your favorite frameworks to create the passes. The transformed graph that contains newly created `ir.Tensor`s will be compatible with downstream passes even if they leverage other computation frameworks.
3 changes: 3 additions & 0 deletions onnxscript/ir/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,8 @@
"DataType",
# Types
"OperatorIdentifier",
# Protobuf compatible types
"TensorProtoTensor",
]

from onnxscript.ir import serde
Expand Down Expand Up @@ -118,3 +120,4 @@
TypeProtocol,
ValueProtocol,
)
from onnxscript.ir.serde import TensorProtoTensor
3 changes: 3 additions & 0 deletions requirements-dev.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,12 @@ rich>=13.7.1

# Docs site
furo
jax[cpu]
matplotlib
ml_dtypes
myst-parser[linkify]
sphinx-copybutton
sphinx-exec-code
sphinx-gallery
sphinx>=6

Expand Down

0 comments on commit e0e96d8

Please sign in to comment.