-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Phi3 to the list of tests models (#1624)
Signed-off-by: Xavier Dupre <[email protected]> Co-authored-by: Justin Chu <[email protected]>
- Loading branch information
1 parent
677ba7f
commit 7f7fd74
Showing
6 changed files
with
406 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
# Copyright (c) Microsoft Corporation | ||
# Licensed under the MIT License. | ||
# pylint: disable=import-outside-toplevel | ||
|
||
from __future__ import annotations | ||
|
||
from typing import Any, Sequence | ||
|
||
import torch | ||
|
||
import onnxscript.tools.transformers_models | ||
|
||
|
||
def has_phi3() -> bool: | ||
"""Tells if package *transformers* contains the phi3 model.""" | ||
try: | ||
from transformers import Phi3Config | ||
|
||
assert Phi3Config | ||
except ImportError: | ||
return False | ||
return True | ||
|
||
|
||
def _prepare_config_and_inputs( | ||
batch_size: int, | ||
seq_length: int, | ||
vocab_size: int, | ||
type_sequence_label_size: int = 2, | ||
type_vocab_size: int = 16, | ||
num_labels: int = 3, | ||
num_choices: int = 4, | ||
use_input_mask: bool = False, | ||
use_token_type_ids: bool = False, | ||
use_labels: bool = False, | ||
) -> tuple[Any, ...]: | ||
input_ids = onnxscript.tools.transformers_models.ids_tensor( | ||
[batch_size, seq_length], vocab_size | ||
) | ||
|
||
input_mask = None | ||
if use_input_mask: | ||
input_mask = torch.tril(torch.ones(batch_size, seq_length)) | ||
|
||
token_type_ids = None | ||
if use_token_type_ids: | ||
assert type_vocab_size > 0, "type_vocab_size is null" | ||
token_type_ids = onnxscript.tools.transformers_models.ids_tensor( | ||
[batch_size, seq_length], type_vocab_size | ||
) | ||
|
||
sequence_labels = None | ||
token_labels = None | ||
choice_labels = None | ||
if use_labels: | ||
assert type_sequence_label_size > 0, "type_sequence_label_size is null" | ||
assert num_labels > 0, "num_labels is null" | ||
assert num_choices > 0, "num_choices is null" | ||
sequence_labels = onnxscript.tools.transformers_models.ids_tensor( | ||
[batch_size], type_sequence_label_size | ||
) | ||
token_labels = onnxscript.tools.transformers_models.ids_tensor( | ||
[batch_size, seq_length], num_labels | ||
) | ||
choice_labels = onnxscript.tools.transformers_models.ids_tensor( | ||
[batch_size], num_choices | ||
) | ||
|
||
return ( | ||
input_ids, | ||
token_type_ids, | ||
input_mask, | ||
sequence_labels, | ||
token_labels, | ||
choice_labels, | ||
) | ||
|
||
|
||
def get_phi3_model( | ||
input_dims: Sequence[tuple[int, int]] = ((13, 7), (14, 7), (15, 8)), | ||
hidden_size: int = 32, | ||
num_hidden_layers: int = 2, | ||
vocab_size: int = 99, | ||
intermediate_size: int = 16, | ||
max_position_embeddings: int = 512, | ||
num_attention_heads: int = 4, | ||
num_key_value_heads: int = 2, | ||
_attn_implementation: str = "eager", # needed value to remove graph breaks | ||
with_mask: bool = True, | ||
) -> tuple[Any, list[tuple[torch.Tensor, ...]], dict]: | ||
""" | ||
Returns a model. | ||
See `PhiConfig | ||
<https://huggingface.co/docs/transformers/main/en/model_doc/phi#transformers.PhiConfig>`_. | ||
The parameters are chosen for a unit test configuration from `test_modeling_phi.py | ||
<https://github.com/huggingface/transformers/blob/main/tests/models/phi/test_modeling_phi.py>`_. | ||
""" | ||
from transformers import Phi3Config, Phi3Model | ||
|
||
dynamic_shapes = {0: {0: "batch", 1: "length"}} | ||
if with_mask: | ||
dynamic_shapes.update({1: {0: "batch", 1: "length"}}) | ||
|
||
config = Phi3Config( | ||
hidden_size=hidden_size, | ||
num_hidden_layers=num_hidden_layers, | ||
vocab_size=vocab_size, | ||
intermediate_size=intermediate_size, | ||
max_position_embeddings=max_position_embeddings, | ||
num_attention_heads=num_attention_heads, | ||
num_key_value_heads=num_key_value_heads, | ||
pad_token_id=min(32000, vocab_size - 1), | ||
) | ||
if _attn_implementation: | ||
config._attn_implementation = _attn_implementation # pylint: disable=protected-access | ||
|
||
if with_mask: | ||
|
||
class Phi3ModelWrapperNoMask(torch.nn.Module): | ||
def __init__(self, config): | ||
super().__init__() | ||
self.model = Phi3Model(config) | ||
|
||
def forward(self, input_ids, attention_mask): | ||
model_output = self.model(input_ids, attention_mask=attention_mask) | ||
return model_output.to_tuple() | ||
|
||
def generate_example_inputs_no_mask(batch: int, seq: int, vocab_size: int): | ||
( | ||
input_ids, | ||
_, # token_type_ids, | ||
input_mask, | ||
_, # sequence_labels, | ||
_, # token_labels, | ||
_, # choice_labels, | ||
) = _prepare_config_and_inputs( | ||
batch_size=batch, | ||
seq_length=seq, | ||
vocab_size=vocab_size, | ||
use_input_mask=True, | ||
) | ||
return input_ids, input_mask | ||
|
||
example_args_collection = [] | ||
for b, s in input_dims: | ||
example_args_collection.append(generate_example_inputs_no_mask(b, s, vocab_size)) | ||
|
||
return Phi3ModelWrapperNoMask(config), example_args_collection, dynamic_shapes | ||
|
||
# no mask | ||
|
||
class Phi3ModelWrapper(torch.nn.Module): | ||
def __init__(self, config): | ||
super().__init__() | ||
self.model = Phi3Model(config) | ||
|
||
def forward(self, input_ids): | ||
model_output = self.model(input_ids) | ||
return model_output.to_tuple() | ||
|
||
def generate_example_inputs(batch: int, seq: int, vocab_size: int): | ||
( | ||
input_ids, | ||
*_, | ||
# token_type_ids, | ||
# input_mask, | ||
# sequence_labels, | ||
# token_labels, | ||
# choice_labels, | ||
) = _prepare_config_and_inputs( | ||
batch_size=batch, | ||
seq_length=seq, | ||
vocab_size=vocab_size, | ||
use_input_mask=True, | ||
) | ||
return (input_ids,) | ||
|
||
example_args_collection = [] | ||
for b, s in input_dims: | ||
example_args_collection.append(generate_example_inputs(b, s, vocab_size)) | ||
|
||
return Phi3ModelWrapper(config), example_args_collection, dynamic_shapes | ||
|
||
|
||
def get_phi3_model_from_config( | ||
warmup: int = 5, | ||
repeat: int = 10, | ||
config: str = "small", | ||
num_hidden_layers: int = 1, | ||
implementation: str = "eager", | ||
dynamic_shapes: bool = False, | ||
with_mask: bool = True, | ||
) -> tuple[Any, list[tuple[torch.Tensor, ...]], dict]: | ||
""" | ||
Returns a model Phi to test or benchmark. | ||
Args: | ||
warmup: Number of inputs to generate. | ||
repeat: Number of inputs to generate for repeat. | ||
config: small, medium or large | ||
num_hidden_layers: number of hidden layers | ||
implementation: eager or sdpa | ||
with_mask: One or two inputs. | ||
dynamic_shapes: dynamic shapes or not | ||
Returns: | ||
Model and list of inputs. | ||
""" | ||
if config == "small": | ||
conf_dict = dict( | ||
input_dims=onnxscript.tools.transformers_models.get_input_dims_for_llm( | ||
dynamic_shapes, warmup, repeat | ||
), | ||
hidden_size=32, | ||
num_hidden_layers=num_hidden_layers, | ||
vocab_size=99, | ||
intermediate_size=16, | ||
max_position_embeddings=512, | ||
num_attention_heads=4, | ||
num_key_value_heads=2, | ||
_attn_implementation=implementation, | ||
with_mask=with_mask, | ||
) | ||
elif config == "medium": | ||
conf_dict = dict( | ||
input_dims=onnxscript.tools.transformers_models.get_input_dims_for_llm( | ||
dynamic_shapes, warmup, repeat | ||
), | ||
hidden_size=1024, | ||
num_hidden_layers=num_hidden_layers, | ||
vocab_size=1024, | ||
intermediate_size=1024, | ||
num_attention_heads=4, | ||
num_key_value_heads=4, | ||
max_position_embeddings=1024, | ||
_attn_implementation=implementation, | ||
with_mask=with_mask, | ||
) | ||
elif config in ("large", "default"): | ||
conf_dict = dict( | ||
input_dims=onnxscript.tools.transformers_models.get_input_dims_for_llm( | ||
dynamic_shapes, warmup, repeat | ||
), | ||
hidden_size=2048, | ||
num_hidden_layers=num_hidden_layers, | ||
vocab_size=51200, | ||
intermediate_size=8192, | ||
num_attention_heads=32, | ||
num_key_value_heads=None, | ||
max_position_embeddings=2048, | ||
_attn_implementation=implementation, | ||
with_mask=with_mask, | ||
) | ||
else: | ||
raise ValueError(f"Unexpected configuration {config!r}.") | ||
|
||
return get_phi3_model(**conf_dict) # type: ignore[arg-type] |
Oops, something went wrong.