Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WebNN] Support SkipSimplifiedLayerNormalization op #23151

Merged
merged 3 commits into from
Dec 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion js/web/docs/webnn-operators.md
Original file line number Diff line number Diff line change
Expand Up @@ -89,9 +89,10 @@ operators and the supported opset domain/versions in **WebNN EP** by ONNX Runtim
| ScatterElements | ai.onnx(11-12, 13-15, 16-17, 18+) | scatterElements | ✗ | ✓ | Only supports 'reduction' == 'none' |
| ScatterND | ai.onnx(11-12, 13-15, 16-17, 18+) | scatterND | ✗ | ✓ | Only supports 'reduction' == 'none' |
| Shape | ai.onnx(7-12, 13-14, 15-18, 19-20, 21+) | slice | ✓ | ✓ | |
| SimplifiedLayerNormalization | ai.onnx(1+) | pow + reduceMean + add + sqrt + div + mul | ✓ | ✓ | |
| SimplifiedLayerNormalization | ai.onnx(1+) | pow, reduceMean, add, sqrt, div, mul | ✓ | ✓ | |
fdwr marked this conversation as resolved.
Show resolved Hide resolved
| Sigmoid | ai.onnx(7-12, 13+) | sigmoid | ✓ | ✓ | |
| Sign | ai.onnx(9-12, 13+) | sign | ✓ | ✓ | |
| SkipSimplifiedLayerNormalization | com.microsoft(1+) | pow, reduceMean, add, sqrt, div, mul | ✓ | ✓ | |
| Softplus | ai.onnx(7+) | softplus | ✓ | ✓ | |
| Softsign | ai.onnx(7+) | softsign | ✓ | ✓ | |
| Sin | ai.onnx(7+) | sin | ✓ | ✓ | |
Expand Down
5 changes: 5 additions & 0 deletions onnxruntime/core/providers/webnn/builders/helper.h
Original file line number Diff line number Diff line change
Expand Up @@ -181,6 +181,10 @@ inline bool IsEmptyTensor(const InitializedTensorSet& initializers, const std::s
return std::any_of(dims.begin(), dims.end(), [](auto d) { return d == 0; });
}

inline bool TensorExists(const ConstPointerContainer<std::vector<NodeArg*>>& defs, size_t tensor_index) noexcept {
return tensor_index < defs.size() && defs[tensor_index]->Exists();
}

bool IsTensorShapeSupported(const NodeArg& node_arg, const std::string& parent_name,
const logging::Logger& logger, bool allow_empty_input = false);

Expand Down Expand Up @@ -278,6 +282,7 @@ static const InlinedHashMap<std::string, std::string> op_map = {
{"Softplus", "softplus"},
{"Softsign", "softsign"},
{"Sin", "sin"},
{"SkipSimplifiedLayerNormalization", "layerNormalization"},
{"Slice", "slice"},
{"Softmax", "softmax"},
{"Split", "split"},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -405,8 +405,8 @@ bool ConvOpBuilder::HasSupportedInputsImpl(const InitializedTensorSet& /* initia
int32_t input1_type; // weight data type
int32_t input2_type; // bias or x_zero_point data type
int32_t input3_type; // w_zero_point data type
bool has_input2 = input_defs.size() > 2 && input_defs[2]->Exists();
bool has_input3 = input_defs.size() > 3 && input_defs[3]->Exists();
bool has_input2 = TensorExists(input_defs, 2);
bool has_input3 = TensorExists(input_defs, 3);

if (!GetType(*input_defs[0], input0_type, logger) ||
!GetType(*input_defs[1], input1_type, logger) ||
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -742,7 +742,7 @@ bool EinsumOpBuilder::HasSupportedInputsImpl(const InitializedTensorSet& /* init
const auto& op_type = node.OpType();
int32_t input0_type;
int32_t input1_type;
bool has_input1 = input_defs.size() > 1 && input_defs[1]->Exists();
bool has_input1 = TensorExists(input_defs, 1);

if (!GetType(*input_defs[0], input0_type, logger) ||
(has_input1 && !GetType(*input_defs[1], input1_type, logger))) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -223,8 +223,8 @@ bool GemmOpBuilder::HasSupportedInputsImpl(const InitializedTensorSet& /* initia
int32_t input1_type; // B data type
int32_t input2_type; // C or a_zero_point data type
int32_t input3_type; // b_zero_point data type
bool has_input2 = input_defs.size() > 2 && input_defs[2]->Exists();
bool has_input3 = input_defs.size() > 3 && input_defs[3]->Exists();
bool has_input2 = TensorExists(input_defs, 2);
bool has_input3 = TensorExists(input_defs, 3);

if (!GetType(*input_defs[0], input0_type, logger) ||
!GetType(*input_defs[1], input1_type, logger) ||
Expand Down
20 changes: 10 additions & 10 deletions onnxruntime/core/providers/webnn/builders/impl/gru_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ class GruOpBuilder : public BaseOpBuilder {
};

void GruOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const {
if (node.InputDefs().size() > 4 && node.InputDefs()[4]->Exists()) {
if (TensorExists(node.InputDefs(), 4)) {
model_builder.AddInitializerToSkip(node.InputDefs()[4]->Name()); // sequence_lens
model_builder.AddInputToSkip(node.InputDefs()[4]->Name());
}
Expand All @@ -56,7 +56,7 @@ Status GruOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const No
options.set("label", node.Name());
options.set("layout", emscripten::val("zrn"));

if (input_defs.size() > 3 && input_defs[3]->Exists()) {
if (TensorExists(input_defs, 3)) {
emscripten::val bias = model_builder.GetOperand(input_defs[3]->Name());
emscripten::val split_options = emscripten::val::object();
split_options.set("label", node.Name() + "_split");
Expand All @@ -68,16 +68,16 @@ Status GruOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const No
options.set("recurrentBias", splitted_biases[1]);
}

if (input_defs.size() > 5 && input_defs[5]->Exists()) {
if (TensorExists(input_defs, 5)) {
options.set("initialHiddenState", model_builder.GetOperand(input_defs[5]->Name()));
}

bool linear_before_reset = !!helper.Get("linear_before_reset ", 0);
options.set("resetAfter", linear_before_reset);

const auto& output_defs = node.OutputDefs();
bool has_Y = output_defs.size() > 0 && output_defs[0]->Exists();
bool has_Y_h = output_defs.size() > 1 && output_defs[1]->Exists();
bool has_Y = TensorExists(output_defs, 0);
bool has_Y_h = TensorExists(output_defs, 1);
options.set("returnSequence", has_Y);

std::string direction = helper.Get("direction", "forward");
Expand Down Expand Up @@ -134,7 +134,7 @@ bool GruOpBuilder::IsOpSupportedImpl(const InitializedTensorSet& initializers, c
}
int32_t steps = static_cast<int32_t>(input_shape[0]);

if (input_defs.size() > 4 && input_defs[4]->Exists()) {
if (TensorExists(input_defs, 4)) {
if (!Contains(initializers, input_defs[4]->Name())) {
LOGS(logger, ERROR) << "GRU: sequence_lens must be constant";
return false;
Expand Down Expand Up @@ -196,8 +196,8 @@ bool GruOpBuilder::HasSupportedInputsImpl(const InitializedTensorSet& /* initial
int32_t input_R_type = 0; // recurrent weight data type
int32_t input_B_type = 0; // bias data type
int32_t input_initial_h_type = 0; // initial hidden state data type
bool has_input_B = input_defs.size() > 3 && input_defs[3]->Exists();
bool has_input_initial_h = input_defs.size() > 5 && input_defs[5]->Exists();
bool has_input_B = TensorExists(input_defs, 3);
bool has_input_initial_h = TensorExists(input_defs, 5);

if (!GetType(*input_defs[0], input_X_type, logger) ||
!GetType(*input_defs[1], input_W_type, logger) ||
Expand Down Expand Up @@ -229,8 +229,8 @@ bool GruOpBuilder::HasSupportedOutputsImpl(const Node& node,
const auto& op_type = node.OpType();
int32_t Y_type = 0;
int32_t Y_h_type = 0;
bool has_Y = output_defs.size() > 0 && output_defs[0]->Exists();
bool has_Y_h = output_defs.size() > 1 && output_defs[1]->Exists();
bool has_Y = TensorExists(output_defs, 0);
bool has_Y_h = TensorExists(output_defs, 1);

bool Y_supported = has_Y && GetType(*output_defs[0], Y_type, logger);
bool Y_h_supported = has_Y_h && GetType(*output_defs[1], Y_h_type, logger);
Expand Down
32 changes: 16 additions & 16 deletions onnxruntime/core/providers/webnn/builders/impl/lstm_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ class LstmOpBuilder : public BaseOpBuilder {
};

void LstmOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const {
if (node.InputDefs().size() > 4 && node.InputDefs()[4]->Exists()) {
if (TensorExists(node.InputDefs(), 4)) {
model_builder.AddInitializerToSkip(node.InputDefs()[4]->Name()); // sequence_lens
model_builder.AddInputToSkip(node.InputDefs()[4]->Name());
}
Expand All @@ -56,7 +56,7 @@ Status LstmOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const N
options.set("label", node.Name());
options.set("layout", emscripten::val("iofg"));

if (input_defs.size() > 3 && input_defs[3]->Exists()) {
if (TensorExists(input_defs, 3)) {
emscripten::val bias = model_builder.GetOperand(input_defs[3]->Name());
emscripten::val split_options = emscripten::val::object();
split_options.set("axis", 1);
Expand All @@ -67,13 +67,13 @@ Status LstmOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const N
options.set("bias", splitted_biases[0]);
options.set("recurrentBias", splitted_biases[1]);
}
if (input_defs.size() > 5 && input_defs[5]->Exists()) {
if (TensorExists(input_defs, 5)) {
options.set("initialHiddenState", model_builder.GetOperand(input_defs[5]->Name()));
}
if (input_defs.size() > 6 && input_defs[6]->Exists()) {
if (TensorExists(input_defs, 6)) {
options.set("initialCellState", model_builder.GetOperand(input_defs[6]->Name()));
}
if (input_defs.size() > 7 && input_defs[7]->Exists()) {
if (TensorExists(input_defs, 7)) {
options.set("peepholeWeight", model_builder.GetOperand(input_defs[7]->Name()));
}

Expand All @@ -87,9 +87,9 @@ Status LstmOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const N
}

const auto& output_defs = node.OutputDefs();
bool has_Y = output_defs.size() > 0 && output_defs[0]->Exists();
bool has_Y_h = output_defs.size() > 1 && output_defs[1]->Exists();
bool has_Y_c = output_defs.size() > 2 && output_defs[2]->Exists();
bool has_Y = TensorExists(output_defs, 0);
bool has_Y_h = TensorExists(output_defs, 1);
bool has_Y_c = TensorExists(output_defs, 2);
options.set("returnSequence", has_Y);

if (helper.HasAttr("activations")) {
Expand Down Expand Up @@ -140,7 +140,7 @@ bool LstmOpBuilder::IsOpSupportedImpl(const InitializedTensorSet& initializers,
}
int32_t steps = static_cast<int32_t>(input_shape[0]);

if (input_defs.size() > 4 && input_defs[4]->Exists()) {
if (TensorExists(input_defs, 4)) {
if (!Contains(initializers, input_defs[4]->Name())) {
LOGS(logger, ERROR) << "LSTM: sequence_lens must be constant";
return false;
Expand Down Expand Up @@ -210,10 +210,10 @@ bool LstmOpBuilder::HasSupportedInputsImpl(const InitializedTensorSet& /* initia
int32_t input5_type = 0; // initialHiddenState data type
int32_t input6_type = 0; // initialCellState data type
int32_t input7_type = 0; // peepholeWeight data type
bool has_input3 = input_defs.size() > 3 && input_defs[3]->Exists();
bool has_input5 = input_defs.size() > 5 && input_defs[5]->Exists();
bool has_input6 = input_defs.size() > 6 && input_defs[6]->Exists();
bool has_input7 = input_defs.size() > 7 && input_defs[7]->Exists();
bool has_input3 = TensorExists(input_defs, 3);
bool has_input5 = TensorExists(input_defs, 5);
bool has_input6 = TensorExists(input_defs, 6);
bool has_input7 = TensorExists(input_defs, 7);

if (!GetType(*input_defs[0], input0_type, logger) ||
!GetType(*input_defs[1], input1_type, logger) ||
Expand Down Expand Up @@ -253,9 +253,9 @@ bool LstmOpBuilder::HasSupportedOutputsImpl(const Node& node,
int32_t Y_type = 0;
int32_t Y_h_type = 0;
int32_t Y_c_type = 0;
bool has_Y = output_defs.size() > 0 && output_defs[0]->Exists();
bool has_Y_h = output_defs.size() > 1 && output_defs[1]->Exists();
bool has_Y_c = output_defs.size() > 2 && output_defs[2]->Exists();
bool has_Y = TensorExists(output_defs, 0);
bool has_Y_h = TensorExists(output_defs, 1);
bool has_Y_c = TensorExists(output_defs, 2);

if (has_Y && GetType(*output_defs[0], Y_type, logger)) {
return IsDataTypeSupportedByOp(op_type, Y_type, wnn_limits, "outputs", "Y", logger);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
const logging::Logger& logger) const {
const auto& op_type = node.OpType();
const auto& input_defs = node.InputDefs();
const auto& output_defs = node.OutputDefs();
ORT_RETURN_IF_NOT(input_defs.size() >= 2, op_type, " requires at least two inputs.");

emscripten::val input = model_builder.GetOperand(input_defs[0]->Name());
Expand All @@ -45,7 +46,8 @@
options.set("label", node.Name());

std::vector<int64_t> scale_shape;
ORT_RETURN_IF_NOT(GetShape(*input_defs[1], scale_shape, logger), "Cannot get scale shape");
const size_t scale_input_index = op_type == "SkipSimplifiedLayerNormalization" ? 2 : 1;
ORT_RETURN_IF_NOT(GetShape(*input_defs[scale_input_index], scale_shape, logger), "Cannot get scale shape");
const auto scale_size = scale_shape.size();
// Except LayerNormalization, other normalization ops' scale input should be 1-D.
if (op_type == "LayerNormalization") {
Expand All @@ -55,19 +57,17 @@
ORT_RETURN_IF_NOT(scale_size == 1, "The scale size should be one.");
}

if (input_defs.size() >= 3 && !input_defs[2]->Name().empty()) {
emscripten::val scale = model_builder.GetOperand(input_defs[scale_input_index]->Name());
options.set("scale", scale);

const size_t bias_input_index = op_type == "SkipSimplifiedLayerNormalization" ? 3 : 2;
emscripten::val bias = emscripten::val::undefined();
if (TensorExists(input_defs, bias_input_index)) {
// Bias input exists, and bias's shape should be the same as scale's shape.
std::vector<int64_t> bias_shape;
ORT_RETURN_IF_NOT(GetShape(*input_defs[2], bias_shape, logger), "Cannot get bias shape");
ORT_RETURN_IF_NOT(GetShape(*input_defs[bias_input_index], bias_shape, logger), "Cannot get bias shape");
ORT_RETURN_IF_NOT(bias_shape == scale_shape, "The bias' shape should be equal to scale's shape.");
}

emscripten::val scale = model_builder.GetOperand(input_defs[1]->Name());
options.set("scale", scale);

if (input_defs.size() >= 3 && !input_defs[2]->Name().empty()) {
// Bias input exists, and bias's shape is the same as scale's shape.
emscripten::val bias = model_builder.GetOperand(input_defs[2]->Name());
bias = model_builder.GetOperand(input_defs[bias_input_index]->Name());
options.set("bias", bias);
}

Expand All @@ -76,6 +76,8 @@
options.set("epsilon", epsilon);

emscripten::val output = emscripten::val::undefined();
// SkipSimplifiedLayerNormalization's output: input_skip_bias_sum.
emscripten::val input_skip_bias_sum = emscripten::val::undefined();
if (op_type == "BatchNormalization") {
ORT_RETURN_IF_NOT(input_defs.size() == 5, "BatchNormalization requires five inputs.");
emscripten::val mean = model_builder.GetOperand(input_defs[3]->Name());
Expand All @@ -85,7 +87,9 @@
}

output = model_builder.GetBuilder().call<emscripten::val>("batchNormalization", input, mean, variance, options);
} else if (op_type == "LayerNormalization" || op_type == "SimplifiedLayerNormalization") {
} else if (op_type == "LayerNormalization" ||
op_type == "SimplifiedLayerNormalization" ||
op_type == "SkipSimplifiedLayerNormalization") {
int64_t axis = helper.Get("axis", -1);
axis = HandleNegativeAxis(axis, rank);
std::vector<uint32_t> axes(rank - SafeInt<uint32_t>(axis));
Expand All @@ -94,13 +98,17 @@
if (op_type == "LayerNormalization") {
options.set("axes", emscripten::val::array(axes));
output = model_builder.GetBuilder().call<emscripten::val>("layerNormalization", input, options);
} else { // SimplifiedLayerNormalization
} else { // SimplifiedLayerNormalization or SkipSimplifiedLayerNormalization
/**
WebNN doesn't support SimplifiedLayerNormalization. So decompose it into a series of ops:
X --> Pow --> ReduceMean --> Add --> Sqrt --> Div -> Mul
^ ^ ^ ^ ^
| | | | |
Y:2 axis B:epsilon A:X A:scale
WebNN doesn't support SimplifiedLayerNormalization or SkipSimplifiedLayerNormalization.
So decompose it into a series of ops:
X --> Pow --> ReduceMean --> Add --> Sqrt --> Div -> Mul -> Add (optional)
^ ^ ^ ^ ^ ^
| | | | | |
Y:2 axis B:epsilon A:X A:scale B:bias

If it is SkipSimplifiedLayerNormalization and its output input_skip_bias_sum exists,
input_skip_bias_sum = X + skip + bias (if it exists)
*/

int32_t input_type;
Expand Down Expand Up @@ -137,6 +145,25 @@
// Mul
common_options.set("label", node.Name() + "_mul");
output = model_builder.GetBuilder().call<emscripten::val>("mul", scale, div, common_options);

// Add (if bias exits)
if (!bias.isUndefined()) {
common_options.set("label", node.Name() + "_add_bias");
fdwr marked this conversation as resolved.
Show resolved Hide resolved
output = model_builder.GetBuilder().call<emscripten::val>("add", output, bias, common_options);
}

// SkipSimplifiedLayerNormalization's output input_skip_bias_sum is the sum of input, skip, and bias.
if (op_type == "SkipSimplifiedLayerNormalization" && TensorExists(output_defs, 3)) {
emscripten::val skip = model_builder.GetOperand(input_defs[1]->Name());
common_options.set("label", node.Name() + "_add_skip");
input_skip_bias_sum = model_builder.GetBuilder().call<emscripten::val>("add", input, skip, common_options);
if (!bias.isUndefined()) {
fdwr marked this conversation as resolved.
Show resolved Hide resolved
common_options.set("label", node.Name() + "_add_skip_bias");
input_skip_bias_sum = model_builder.GetBuilder().call<emscripten::val>(
"add", input_skip_bias_sum, bias, common_options);
}
model_builder.AddOperand(output_defs[3]->Name(), std::move(input_skip_bias_sum));
}
}
} else if (op_type == "InstanceNormalization") {
// WebNN spec only supports 4D input for instanceNormalization.
Expand Down Expand Up @@ -188,7 +215,7 @@
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Unsupported normalization op: ", op_type);
}
model_builder.AddOperand(node.OutputDefs()[0]->Name(), std::move(output));
model_builder.AddOperand(output_defs[0]->Name(), std::move(output));

Check warning on line 218 in onnxruntime/core/providers/webnn/builders/impl/normalization_op_builder.cc

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <utility> for move [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webnn/builders/impl/normalization_op_builder.cc:218: Add #include <utility> for move [build/include_what_you_use] [4]

return Status::OK();
}
Expand All @@ -215,9 +242,21 @@
}

const auto& output_defs = node.OutputDefs();
if (output_defs.size() != 1) {
LOGS(logger, VERBOSE) << op_type << " output count must be one.";
return false;
if (op_type == "SkipSimplifiedLayerNormalization") {
if (output_defs.size() > 4) {
LOGS(logger, VERBOSE) << "SkipSimplifiedLayerNormalization output count must not exceed 4.";
return false;
}
if (TensorExists(output_defs, 1) || TensorExists(output_defs, 2)) {
// Output mean and inv_std_var are used for training mode, which is not supported.
LOGS(logger, VERBOSE) << "SkipSimplifiedLayerNormalization's output mean and inv_std_var are not supported.";
return false;
}
} else {
if (output_defs.size() != 1) {
LOGS(logger, VERBOSE) << op_type << " output count must be one.";
return false;
}
}

if (op_type == "BatchNormalization" && helper.Get("training_mode", 0)) {
Expand All @@ -238,9 +277,9 @@
int32_t input2_type; // B data type
int32_t input3_type; // mean data type
int32_t input4_type; // var data type
bool has_input2 = input_defs.size() > 2 && input_defs[2]->Exists();
bool has_input3 = input_defs.size() > 3 && input_defs[3]->Exists();
bool has_input4 = input_defs.size() > 3 && input_defs[4]->Exists();
bool has_input2 = TensorExists(input_defs, 2);
bool has_input3 = TensorExists(input_defs, 3);
bool has_input4 = TensorExists(input_defs, 4);

if (!GetType(*input_defs[0], input0_type, logger) ||
!GetType(*input_defs[1], input1_type, logger) ||
Expand Down Expand Up @@ -277,6 +316,7 @@
"InstanceNormalization",
"LayerNormalization",
"SimplifiedLayerNormalization",
"SkipSimplifiedLayerNormalization",
};

op_registrations.builders.push_back(std::make_unique<NormalizationOpBuilder>());
Expand Down
Loading
Loading