Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CANN]: Update the doc of CANN EP #23087

Merged
merged 2 commits into from
Dec 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
170 changes: 146 additions & 24 deletions docs/execution-providers/community-maintained/CANN-ExecutionProvider.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,10 +32,9 @@ Please reference table below for official CANN packages dependencies for the ONN

|ONNX Runtime|CANN|
|---|---|
|v1.12.1|6.0.0|
|v1.13.1|6.0.0|
|v1.14.0|6.0.0|
|v1.15.0|6.0.0|
|v1.18.0|8.0.0|
|v1.19.0|8.0.0|
|v1.20.0|8.0.0|

## Build

Expand Down Expand Up @@ -201,26 +200,149 @@ session = ort.InferenceSession(model_path, sess_options=options, providers=provi
```

### C/C++

```c
const static OrtApi *g_ort = OrtGetApiBase()->GetApi(ORT_API_VERSION);

OrtSessionOptions *session_options;
g_ort->CreateSessionOptions(&session_options);

OrtCANNProviderOptions *cann_options = nullptr;
g_ort->CreateCANNProviderOptions(&cann_options);

std::vector<const char *> keys{"device_id", "npu_mem_limit", "arena_extend_strategy", "enable_cann_graph"};
std::vector<const char *> values{"0", "2147483648", "kSameAsRequested", "1"};

g_ort->UpdateCANNProviderOptions(cann_options, keys.data(), values.data(), keys.size());

g_ort->SessionOptionsAppendExecutionProvider_CANN(session_options, cann_options);

// Finally, don't forget to release the provider options and session options
g_ort->ReleaseCANNProviderOptions(cann_options);
g_ort->ReleaseSessionOptions(session_options);
Note: This sample shows model inference using [resnet50_Opset16.onnx](https://github.com/onnx/models/tree/main/Computer_Vision/resnet50_Opset16_timm) as an example.
You need to modify the model_path, and the input_prepare() and output_postprocess() functions according to your needs.


```c++
#include <iostream>
#include <vector>

#include "onnxruntime_cxx_api.h"

// path of model, Change to user's own model path
const char* model_path = "./onnx/resnet50_Opset16.onnx";

/**
* @brief Input data preparation provided by user.
*
* @param num_input_nodes The number of model input nodes.
* @return A collection of input data.
*/
std::vector<std::vector<float>> input_prepare(size_t num_input_nodes) {
std::vector<std::vector<float>> input_datas;
input_datas.reserve(num_input_nodes);

constexpr size_t input_data_size = 3 * 224 * 224;
std::vector<float> input_data(input_data_size);
// initialize input data with values in [0.0, 1.0]
for (unsigned int i = 0; i < input_data_size; i++)
input_data[i] = (float)i / (input_data_size + 1);
input_datas.push_back(input_data);

return input_datas;
}

/**
* @brief Model output data processing logic(For User updates).
*
* @param output_tensors The results of the model output.
*/
void output_postprocess(std::vector<Ort::Value>& output_tensors) {
auto floatarr = output_tensors.front().GetTensorMutableData<float>();

for (int i = 0; i < 5; i++) {
std::cout << "Score for class [" << i << "] = " << floatarr[i] << '\n';
}

std::cout << "Done!" << std::endl;
}

/**
* @brief The main functions for model inference.
*
* The complete model inference process, which generally does not need to be
* changed here
*/
void inference() {
const auto& api = Ort::GetApi();

// Enable cann graph in cann provider option.
OrtCANNProviderOptions* cann_options = nullptr;
api.CreateCANNProviderOptions(&cann_options);

// Configurations of EP
std::vector<const char*> keys{
"device_id",
"npu_mem_limit",
"arena_extend_strategy",
"enable_cann_graph"};
std::vector<const char*> values{"0", "4294967296", "kNextPowerOfTwo", "1"};
api.UpdateCANNProviderOptions(
cann_options, keys.data(), values.data(), keys.size());

// Convert to general session options
Ort::SessionOptions session_options;
api.SessionOptionsAppendExecutionProvider_CANN(
static_cast<OrtSessionOptions*>(session_options), cann_options);

Ort::Session session(Ort::Env(), model_path, session_options);

Ort::AllocatorWithDefaultOptions allocator;

// Input Process
const size_t num_input_nodes = session.GetInputCount();
std::vector<const char*> input_node_names;
std::vector<Ort::AllocatedStringPtr> input_names_ptr;
input_node_names.reserve(num_input_nodes);
input_names_ptr.reserve(num_input_nodes);
std::vector<std::vector<int64_t>> input_node_shapes;
std::cout << num_input_nodes << std::endl;
for (size_t i = 0; i < num_input_nodes; i++) {
auto input_name = session.GetInputNameAllocated(i, allocator);
input_node_names.push_back(input_name.get());
input_names_ptr.push_back(std::move(input_name));
auto type_info = session.GetInputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
input_node_shapes.push_back(tensor_info.GetShape());
}

// Output Process
const size_t num_output_nodes = session.GetOutputCount();
std::vector<const char*> output_node_names;
std::vector<Ort::AllocatedStringPtr> output_names_ptr;
output_names_ptr.reserve(num_input_nodes);
output_node_names.reserve(num_output_nodes);
for (size_t i = 0; i < num_output_nodes; i++) {
auto output_name = session.GetOutputNameAllocated(i, allocator);
output_node_names.push_back(output_name.get());
output_names_ptr.push_back(std::move(output_name));
}

// User need to generate input date according to real situation.
std::vector<std::vector<float>> input_datas = input_prepare(num_input_nodes);

auto memory_info = Ort::MemoryInfo::CreateCpu(
OrtAllocatorType::OrtArenaAllocator, OrtMemTypeDefault);

std::vector<Ort::Value> input_tensors;
input_tensors.reserve(num_input_nodes);
for (size_t i = 0; i < input_node_shapes.size(); i++) {
auto input_tensor = Ort::Value::CreateTensor<float>(
memory_info,
input_datas[i].data(),
input_datas[i].size(),
input_node_shapes[i].data(),
input_node_shapes[i].size());
input_tensors.push_back(std::move(input_tensor));
}

auto output_tensors = session.Run(
Ort::RunOptions{nullptr},
input_node_names.data(),
input_tensors.data(),
num_input_nodes,
output_node_names.data(),
output_node_names.size());

// Processing of out_tensor
output_postprocess(output_tensors);
}

int main(int argc, char* argv[]) {
inference();
return 0;
}
```

## Supported ops
Expand Down
Loading