Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CoreML: Add ML Program ConvTranspose #21416

Merged
merged 11 commits into from
Jul 24, 2024
5 changes: 4 additions & 1 deletion cmake/onnxruntime_unittests.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -679,7 +679,10 @@ if(onnxruntime_USE_RKNPU)
endif()

if(onnxruntime_USE_COREML)
list(APPEND onnxruntime_test_framework_src_patterns ${TEST_SRC_DIR}/providers/coreml/*)
list(APPEND onnxruntime_test_framework_src_patterns ${TEST_SRC_DIR}/providers/coreml/*.cc)
if(APPLE)
list(APPEND onnxruntime_test_framework_src_patterns ${TEST_SRC_DIR}/providers/coreml/*.mm)
endif()
list(APPEND onnxruntime_test_framework_libs onnxruntime_providers_coreml coreml_proto)
list(APPEND onnxruntime_test_providers_dependencies onnxruntime_providers_coreml coreml_proto)
list(APPEND onnxruntime_test_providers_libs onnxruntime_providers_coreml coreml_proto)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include "core/providers/common.h"
#include "core/providers/coreml/builders/helper.h"
#include "core/providers/coreml/builders/impl/base_op_builder.h"
#include "core/providers/coreml/builders/impl/builder_utils.h"
#include "core/providers/coreml/builders/model_builder.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/coreml/shape_utils.h"
#include "core/providers/shared/utils/utils.h"

using namespace CoreML::Specification;

Check warning on line 13 in onnxruntime/core/providers/coreml/builders/impl/convtranspose_op_builder.cc

View workflow job for this annotation

GitHub Actions / Lint C++

[cpplint] reported by reviewdog 🐶 Do not use namespace using-directives. Use using-declarations instead. [build/namespaces] [5] Raw Output: onnxruntime/core/providers/coreml/builders/impl/convtranspose_op_builder.cc:13: Do not use namespace using-directives. Use using-declarations instead. [build/namespaces] [5]

namespace onnxruntime {
namespace coreml {

class ConvTransposeOpBuilder : public BaseOpBuilder {
Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node,
const logging::Logger& logger) const override;

bool IsOpSupportedImpl(const Node& /* node */, const OpBuilderInputParams& /* input_params */,
const logging::Logger& /* logger */) const override;

bool SupportsMLProgram() const override { return true; }
};

Status ConvTransposeOpBuilder::AddToModelBuilderImpl([[maybe_unused]] ModelBuilder& model_builder,
[[maybe_unused]] const Node& node,
const logging::Logger& /*logger*/) const {
#if defined(COREML_ENABLE_MLPROGRAM)
using namespace CoreML::Specification::MILSpec; // NOLINT
const auto input_defs = node.InputDefs();
const auto output_defs = node.OutputDefs();
const auto& input_name = input_defs[0]->Name();

NodeAttrHelper helper(node);

// https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.conv.conv_transpose
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, "conv_transpose");
const auto& op_type = op->type();

AddOperationInput(*op, "x", input_name);
AddOperationInput(*op, "weight", input_defs[1]->Name());

if (input_defs.size() > 2) {
AddOperationInput(*op, "bias", input_defs[2]->Name());
}

// we know this input has a valid shape due to the check in IsOpSupportedImpl. ignore N and C dims.
const auto num_spatial_dims = input_defs[1]->Shape()->dim_size() - 2;

// Spec says strides/dilations/pads are optional but reality is they're required for at least the iOS15 target
// which is CoreML5. Due to that we just add everything for simplicity.
const auto strides = helper.Get("strides", std::vector<int64_t>(num_spatial_dims, 1));
const auto dilations = helper.Get("dilations", std::vector<int64_t>(num_spatial_dims, 1));

AddOperationInput(*op, "strides", model_builder.AddConstant(op_type, "strides", strides));
AddOperationInput(*op, "dilations", model_builder.AddConstant(op_type, "dilations", dilations));

const std::optional<int64_t> groups = helper.GetInt64("group");
if (groups) {
AddOperationInput(*op, "groups", model_builder.AddScalarConstant(op_type, "groups", *groups));
}

// if we can enable output_shape, this code works. see IsOpSupportedImpl for the reason it's disabled.
// const auto output_shape = helper.GetInt64s("output_shape");
// if (output_shape) {
// AddOperationInput(*op, "output_shape", model_builder.AddConstant(op_type, "output_shape", *output_shape));
// // these are required despite the spec saying otherwise
// AddOperationInput(*op, "pad_type", model_builder.AddScalarConstant(op_type, "pad_type", std::string("valid")));
// std::vector<int64_t> pads(num_spatial_dims * 2, 0);
// AddOperationInput(*op, "pad", model_builder.AddConstant(op_type, "pad", pads));
//} else {
// AddPadTypeAndPads(*op, model_builder, op_type, helper, num_spatial_dims);
//}

AddPadTypeAndPads(*op, model_builder, op_type, helper, num_spatial_dims);

AddOperationOutput(*op, *output_defs[0]);

model_builder.AddOperation(std::move(op));
#endif // defined(COREML_ENABLE_MLPROGRAM)

return Status::OK();
}

bool ConvTransposeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
if (!input_params.create_mlprogram) {
LOGS(logger, VERBOSE) << "ConvTranspose: ML Program required";
return false;
}

// ML Program
// - const weight until CoreML7 (iOS17)
// - require constant for now as non-const would be unusual and we rely on the shape of W to be known to validate
// the kernel_shape can be used
// - const bias
// - const pad
// - if auto_pad is same_upper or same_lower the output[i] - (input[i] * strides[i]) must be divisible by 2
// as the pads must be equally split as there's no upper/lower option in CoreML
// - punting on supporting this for now
// - must be symmetric for CoreML to do the right thing
// - const strides/dilations/groups
// - output_shape CoreML output is inconsistent so disabled for now
//
// NOTE: need to test with/without the COREML_FLAG_USE_CPU_ONLY flag being set to get an idea of how flaky the CoreML
// behavior is.
// Update /onnxruntime/test/util/default_providers.cc:DefaultCoreMLExecutionProvider to do so

const auto& input_defs = node.InputDefs();

std::vector<int64_t> input_shape;
if (!GetShape(*input_defs[0], input_shape, logger)) {
// requires the rank at least to be known
LOGS(logger, VERBOSE) << "ConvTranspose: failed to get input shape";
return false;
}

// for simplicity require weight to be constant
const auto& weight_arg = *input_defs[1];
const auto& weight_name = input_defs[1]->Name();
const auto* weight = input_params.graph_viewer.GetConstantInitializer(weight_name);
if (!weight) {
LOGS(logger, VERBOSE) << "ConvTranspose: weight must be constant";
return false;
}

if (input_defs.size() > 2 && !input_params.graph_viewer.GetConstantInitializer(input_defs[2]->Name())) {
LOGS(logger, VERBOSE) << "ConvTranspose: bias must be constant";
return false;
}

std::vector<int64_t> weight_shape;
if (!GetShape(weight_arg, weight_shape, logger)) {
// impossible as it's a constant initializer
LOGS(logger, VERBOSE) << "ConvTranspose: failed to get weight shape";
return false;
}

int64_t num_spatial_dims = narrow<int64_t>(weight_shape.size()) - 2;

NodeAttrHelper helper(node);

// Punt on SAME_UPPER/SAME_LOWER for now.
// We could infer that 'same' -> 'same_upper' based on the CoreML conv spec having 'same' and 'same_lower' but
// need to validate that assertion.
// Additionally, if the pads size is equal, there's no difference between same_upper and same_lower.
// To do that we'd need the 'output_shape' attribute to check against.
// Can add this handling if/when needed.
auto autopad = StringToAutoPadType(helper.Get("auto_pad", "NOTSET"));
if (autopad == AutoPadType::SAME_LOWER || autopad == AutoPadType::SAME_UPPER) {
LOGS(logger, VERBOSE) << "ConvTranspose: support for SAME_LOWER/SAME_UPPER is not implemented yet";
return false;
} else if (autopad == AutoPadType::NOTSET) {
// CoreML output is inconsistent between CPU_ONLY and ALL if the pads aren't all the same value.
// CPU matches the expected output, but other devices don't seem to (at least on macOS).
auto onnx_pads = *helper.GetInt64s("pads"); // 'pads' are required if auto_pad is NOTSET
const auto pad_value = onnx_pads[0];
if (!std::all_of(onnx_pads.begin() + 1, onnx_pads.end(),
[pad_value](auto value) { return value == pad_value; })) {
LOGS(logger, VERBOSE) << "ConvTranspose: all pad values must be the same for CoreML to return "
"consistent results";
return false;
}
}

// there's no input to specify a kernel shape in CoreML.
// it's OK if a specified kernel_shape matches kH and kW dims of the weight input.
auto kernel_shape = helper.GetInt64s("kernel_shape");
if (kernel_shape) {
bool valid = true;

if (static_cast<int64_t>(kernel_shape->size()) == num_spatial_dims) {
for (int i = 0; i < num_spatial_dims; ++i) {
// check the specified kernel shape matches the weight shape. skip the initial N and C dims in the latter.
if ((*kernel_shape)[i] != weight_shape[i + 2]) {
valid = false;
break;
}
}
} else {
valid = false;
}

if (!valid) {
LOGS(logger, VERBOSE) << "ConvTranspose: kernel_shape attribute does not match the weight shape";
return false;
}
}

// In theory this can be supported, but running with COREML_FLAG_USE_CPU_ONLY produces output that doesn't match
// ONNX. Running without that flag produces the expected output. Madness...
auto output_shape = helper.GetInt64s("output_shape");
if (output_shape) {
LOGS(logger, VERBOSE) << "ConvTranspose: output_shape is not supported as the CoreML output is inconsistent";
return false;
}

// output_padding, if specified, must be the default value of all zeros as there's no equivalent in CoreML.
auto output_padding = helper.GetInt64s("output_padding");
if (output_padding &&
std::any_of(output_padding->begin(), output_padding->end(), [](auto value) { return value != 0; })) {
LOGS(logger, VERBOSE) << "ConvTranspose: output_padding is not supported";
return false;
}

return true;
}

void CreateConvTransposeOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) {
op_registrations.builders.push_back(std::make_unique<ConvTransposeOpBuilder>());
op_registrations.op_builder_map.emplace(op_type, op_registrations.builders.back().get());
}

} // namespace coreml
} // namespace onnxruntime
Original file line number Diff line number Diff line change
Expand Up @@ -427,13 +427,13 @@ bool ResizeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputPa
auto h_in = input_shape[input_rank - 2];
auto w_in = input_shape[input_rank - 1];

if (!utils::IsScalingByAFactorOfN(h_in, scale_h)) {
if (!utils::ReciprocalIsAFactorOfN(h_in, scale_h)) {
LOGS(logger, VERBOSE) << "Resize: downsampling scale " << scale_h
<< " is not a factor of input height: " << h_in;
return false;
}

if (!utils::IsScalingByAFactorOfN(w_in, scale_w)) {
if (!utils::ReciprocalIsAFactorOfN(w_in, scale_w)) {
LOGS(logger, VERBOSE) << "Resize: downsampling scale " << scale_w
<< " is not a factor of input width: " << w_in;
return false;
Expand Down
Loading
Loading