Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add 1.17 mobile package info. Same as 1.16 #19339

Merged
merged 1 commit into from
Jan 31, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 139 additions & 0 deletions docs/reference/operators/mobile_package_op_type_support_1.17.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
---
title: ORT 1.17 Mobile Package Operators
parent: Operators
grand_parent: Reference
nav_exclude: true
---

# ONNX Runtime Mobile Pre-Built Package Operator and Type Support

## Supported operators and types

The supported operators and types are based on what is required to support float32 and quantized versions of popular models. The full list of input models used to determine this list is available [here](https://github.com/microsoft/onnxruntime/blob/main/tools/ci_build/github/android/mobile_package.required_operators.readme.txt)

## Supported data input types

- float
- int8_t
- uint8_t

NOTE: Operators used to manipulate dimensions and indices will support int32 and int64.

## Supported Operators

|Operator|Opsets|
|--------|------|
|**ai.onnx**||
|ai.onnx:Abs|12, 13, 14, 15|
|ai.onnx:Add|12, 13, 14, 15|
|ai.onnx:And|12, 13, 14, 15|
|ai.onnx:ArgMax|12, 13, 14, 15|
|ai.onnx:ArgMin|12, 13, 14, 15|
|ai.onnx:AveragePool|12, 13, 14, 15|
|ai.onnx:Cast|12, 13, 14, 15|
|ai.onnx:Ceil|12, 13, 14, 15|
|ai.onnx:Clip|12, 13, 14, 15|
|ai.onnx:Concat|12, 13, 14, 15|
|ai.onnx:ConstantOfShape|12, 13, 14, 15|
|ai.onnx:Conv|12, 13, 14, 15|
|ai.onnx:ConvTranspose|12, 13, 14, 15|
|ai.onnx:Cos|12, 13, 14, 15|
|ai.onnx:CumSum|12, 13, 14, 15|
|ai.onnx:DepthToSpace|12, 13, 14, 15|
|ai.onnx:DequantizeLinear|12, 13, 14, 15|
|ai.onnx:Div|12, 13, 14, 15|
|ai.onnx:DynamicQuantizeLinear|12, 13, 14, 15|
|ai.onnx:Elu|12, 13, 14, 15|
|ai.onnx:Equal|12, 13, 14, 15|
|ai.onnx:Erf|12, 13, 14, 15|
|ai.onnx:Exp|12, 13, 14, 15|
|ai.onnx:Expand|12, 13, 14, 15|
|ai.onnx:Flatten|12, 13, 14, 15|
|ai.onnx:Floor|12, 13, 14, 15|
|ai.onnx:Gather|12, 13, 14, 15|
|ai.onnx:GatherND|12, 13, 14, 15|
|ai.onnx:Gemm|12, 13, 14, 15|
|ai.onnx:GlobalAveragePool|12, 13, 14, 15|
|ai.onnx:Greater|12, 13, 14, 15|
|ai.onnx:GreaterOrEqual|12, 13, 14, 15|
|ai.onnx:HardSigmoid|12, 13, 14, 15|
|ai.onnx:Identity|12, 13, 14, 15|
|ai.onnx:If|12, 13, 14, 15|
|ai.onnx:InstanceNormalization|12, 13, 14, 15|
|ai.onnx:LRN|12, 13, 14, 15|
|ai.onnx:LayerNormalization|1|
|ai.onnx:LeakyRelu|12, 13, 14, 15|
|ai.onnx:Less|12, 13, 14, 15|
|ai.onnx:LessOrEqual|12, 13, 14, 15|
|ai.onnx:Log|12, 13, 14, 15|
|ai.onnx:LogSoftmax|12, 13, 14, 15|
|ai.onnx:Loop|12, 13, 14, 15|
|ai.onnx:MatMul|12, 13, 14, 15|
|ai.onnx:MatMulInteger|12, 13, 14, 15|
|ai.onnx:Max|12, 13, 14, 15|
|ai.onnx:MaxPool|12, 13, 14, 15|
|ai.onnx:Mean|12, 13, 14, 15|
|ai.onnx:Min|12, 13, 14, 15|
|ai.onnx:Mul|12, 13, 14, 15|
|ai.onnx:Neg|12, 13, 14, 15|
|ai.onnx:NonMaxSuppression|12, 13, 14, 15|
|ai.onnx:NonZero|12, 13, 14, 15|
|ai.onnx:Not|12, 13, 14, 15|
|ai.onnx:Or|12, 13, 14, 15|
|ai.onnx:PRelu|12, 13, 14, 15|
|ai.onnx:Pad|12, 13, 14, 15|
|ai.onnx:Pow|12, 13, 14, 15|
|ai.onnx:QLinearConv|12, 13, 14, 15|
|ai.onnx:QLinearMatMul|12, 13, 14, 15|
|ai.onnx:QuantizeLinear|12, 13, 14, 15|
|ai.onnx:Range|12, 13, 14, 15|
|ai.onnx:Reciprocal|12, 13, 14, 15|
|ai.onnx:ReduceMax|12, 13, 14, 15|
|ai.onnx:ReduceMean|12, 13, 14, 15|
|ai.onnx:ReduceMin|12, 13, 14, 15|
|ai.onnx:ReduceProd|12, 13, 14, 15|
|ai.onnx:ReduceSum|12, 13, 14, 15|
|ai.onnx:Relu|12, 13, 14, 15|
|ai.onnx:Reshape|12, 13, 14, 15|
|ai.onnx:Resize|12, 13, 14, 15|
|ai.onnx:ReverseSequence|12, 13, 14, 15|
|ai.onnx:Round|12, 13, 14, 15|
|ai.onnx:Scan|12, 13, 14, 15|
|ai.onnx:ScatterND|12, 13, 14, 15|
|ai.onnx:Shape|12, 13, 14, 15|
|ai.onnx:Sigmoid|12, 13, 14, 15|
|ai.onnx:Sin|12, 13, 14, 15|
|ai.onnx:Size|12, 13, 14, 15|
|ai.onnx:Slice|12, 13, 14, 15|
|ai.onnx:Softmax|12, 13, 14, 15|
|ai.onnx:SpaceToDepth|12, 13, 14, 15|
|ai.onnx:Split|12, 13, 14, 15|
|ai.onnx:Sqrt|12, 13, 14, 15|
|ai.onnx:Squeeze|12, 13, 14, 15|
|ai.onnx:Sub|12, 13, 14, 15|
|ai.onnx:Sum|12, 13, 14, 15|
|ai.onnx:Tanh|12, 13, 14, 15|
|ai.onnx:ThresholdedRelu|12, 13, 14, 15|
|ai.onnx:Tile|12, 13, 14, 15|
|ai.onnx:TopK|12, 13, 14, 15|
|ai.onnx:Transpose|12, 13, 14, 15|
|ai.onnx:Unique|12, 13, 14, 15|
|ai.onnx:Unsqueeze|12, 13, 14, 15|
|ai.onnx:Where|12, 13, 14, 15|
|||
|**com.microsoft**||
|com.microsoft:DynamicQuantizeMatMul|1|
|com.microsoft:FusedConv|1|
|com.microsoft:FusedGemm|1|
|com.microsoft:FusedMatMul|1|
|com.microsoft:Gelu|1|
|com.microsoft:MatMulIntegerToFloat|1|
|com.microsoft:NhwcMaxPool|1|
|com.microsoft:QLinearAdd|1|
|com.microsoft:QLinearAveragePool|1|
|com.microsoft:QLinearConv|1|
|com.microsoft:QLinearGlobalAveragePool|1|
|com.microsoft:QLinearLeakyRelu|1|
|com.microsoft:QLinearMul|1|
|com.microsoft:QLinearSigmoid|1|
|||
Loading