Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

phi2 contrib ops changes #19112

Merged
merged 16 commits into from
Jan 22, 2024
12 changes: 9 additions & 3 deletions docs/ContribOperators.md
Original file line number Diff line number Diff line change
Expand Up @@ -3031,6 +3031,8 @@ This version of the operator has been available since version 1 of the 'com.micr
<dd>Number of attention heads</dd>
<dt><tt>scale</tt> : float</dt>
<dd>Custom scale will be used if specified. Default value is 1/sqrt(head_size)</dd>
<dt><tt>unidirectional</tt> : int</dt>
<dd>Whether every token can only attend to previous tokens. Default value is 0.</dd>
</dl>

#### Inputs (1 - 8)
Expand Down Expand Up @@ -5021,6 +5023,10 @@ This version of the operator has been available since version 1 of the 'com.micr
<dl>
<dt><tt>interleaved</tt> : int</dt>
<dd>Rotate using interleaved pattern. Default value is 0 (False).</dd>
<dt><tt>num_heads</tt> : int</dt>
<dd>Number of attention heads. Default value is 0. Must use with rotary_embedding_dim</dd>
<dt><tt>rotary_embedding_dim</tt> : int</dt>
<dd>Rotary embedding dimension. Default value is 0.</dd>
<dt><tt>scale</tt> : float</dt>
<dd>Custom scale will be used if specified. Default value is 1.0</dd>
</dl>
Expand All @@ -5033,9 +5039,9 @@ This version of the operator has been available since version 1 of the 'com.micr
<dt><tt>position_ids</tt> : M</dt>
<dd>1D tensor with shape (1) or 2D tensor with shape (batch_size, sequence_length)</dd>
<dt><tt>cos_cache</tt> : T</dt>
<dd>2D tensor with shape (max_sequence_length, head_size / 2).</dd>
<dd>2D tensor with shape (max_sequence_length, head_size / 2) or (max_sequence_length, rotary_embedding_dim / 2)</dd>
<dt><tt>sin_cache</tt> : T</dt>
<dd>2D tensor with shape (max_sequence_length, head_size / 2).</dd>
<dd>2D tensor with shape (max_sequence_length, head_size / 2) or (max_sequence_length, rotary_embedding_dim / 2)</dd>
</dl>

#### Outputs
Expand All @@ -5048,7 +5054,7 @@ This version of the operator has been available since version 1 of the 'com.micr
#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(float16)</dt>
<dt><tt>T</tt> : tensor(float), tensor(float16), tensor(bfloat16)</dt>
<dd>Constrain input and output types to float tensors.</dd>
<dt><tt>M</tt> : tensor(int64)</dt>
<dd>Constrain input and output types to integer tensors</dd>
Expand Down
5 changes: 3 additions & 2 deletions docs/OperatorKernels.md
Original file line number Diff line number Diff line change
Expand Up @@ -425,7 +425,8 @@ Do not modify directly.*
|DictVectorizer|*in* X:**T1**<br> *out* Y:**T2**|1+|**T1** = map(int64,tensor(double)), map(int64,tensor(float)), map(int64,tensor(string)), map(string,tensor(double)), map(string,tensor(float)), map(string,tensor(int64))<br/> **T2** = tensor(double), tensor(float), tensor(int64), tensor(string)|
|FeatureVectorizer|*in* X:**T1**<br> *out* Y:**tensor(float)**|1+|**T1** = tensor(double), tensor(float), tensor(int32), tensor(int64)|
|Imputer|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(float), tensor(int64)|
|LabelEncoder|*in* X:**T1**<br> *out* Y:**T2**|2+|**T1** = tensor(float), tensor(int64), tensor(string)<br/> **T2** = tensor(float), tensor(int64), tensor(string)|
|LabelEncoder|*in* X:**T1**<br> *out* Y:**T2**|4+|**T1** = tensor(double), tensor(float), tensor(int64), tensor(string)<br/> **T2** = tensor(double), tensor(float), tensor(int16), tensor(int64), tensor(string)|
|||[2, 3]|**T1** = tensor(float), tensor(int64), tensor(string)<br/> **T2** = tensor(float), tensor(int64), tensor(string)|
|||1|**T1** = tensor(int64), tensor(string)<br/> **T2** = tensor(int64), tensor(string)|
|LinearClassifier|*in* X:**T1**<br> *out* Y:**T2**<br> *out* Z:**tensor(float)**|1+|**T1** = tensor(double), tensor(float), tensor(int32), tensor(int64)<br/> **T2** = tensor(int64), tensor(string)|
|LinearRegressor|*in* X:**T**<br> *out* Y:**tensor(float)**|1+|**T** = tensor(float)|
Expand Down Expand Up @@ -867,7 +868,7 @@ Do not modify directly.*
|RemovePadding|*in* input:**T**<br> *in* sequence_token_count:**M**<br> *out* output:**T**<br> *out* token_offset:**M**<br> *out* cumulated_seq_len:**M**<br> *out* max_seq_len:**M**|1+|**T** = tensor(float), tensor(float16)|
|RestorePadding|*in* input:**T**<br> *in* token_offset:**M**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|Rfft|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|RotaryEmbedding|*in* input:**T**<br> *in* position_ids:**M**<br> *in* cos_cache:**T**<br> *in* sin_cache:**T**<br> *out* output:**T**|1+|**M** = tensor(int64)<br/> **T** = tensor(float), tensor(float16)|
|RotaryEmbedding|*in* input:**T**<br> *in* position_ids:**M**<br> *in* cos_cache:**T**<br> *in* sin_cache:**T**<br> *out* output:**T**|1+|**M** = tensor(int64)<br/> **T** = tensor(bfloat16), tensor(float), tensor(float16)|
|Sampling|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**I**<br> *in* prefix_vocab_mask:**I**<br> *in* attention_mask:**I**<br> *in* presence_mask:**I**<br> *in* seed:**I**<br> *out* sequences:**I**<br> *out* filtered_logits:**T**|1+|**T** = tensor(float), tensor(float16)|
|SkipGroupNorm|*in* X:**T**<br> *in* gamma:**M**<br> *in* beta:**M**<br> *in* skip:**T**<br> *in* bias:**T**<br> *out* Y:**T**<br> *out* S:**T**|1+|**T** = tensor(float), tensor(float16)|
|SkipLayerNormalization|*in* input:**T**<br> *in* skip:**T**<br> *in* gamma:**T**<br> *in* beta:**T**<br> *in* bias:**T**<br> *out* output:**T**<br> *out* mean:**U**<br> *out* inv_std_var:**U**<br> *out* input_skip_bias_sum:**T**|1+|**T** = tensor(float), tensor(float16)|
Expand Down
4 changes: 3 additions & 1 deletion onnxruntime/contrib_ops/cpu/bert/multihead_attention.cc
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ MultiHeadAttention<T>::MultiHeadAttention(const OpKernelInfo& info) : OpKernel(i
num_heads_ = static_cast<int>(num_heads);

mask_filter_value_ = info.GetAttrOrDefault<float>("mask_filter_value", -10000.0f);
is_unidirectional_ = info.GetAttrOrDefault<int64_t>("unidirectional", 0) == 1;
}

// Reshape Q/K/V from BxSxD to BxSxNxH
Expand Down Expand Up @@ -283,8 +284,9 @@ Status MultiHeadAttention<T>::Compute(OpKernelContext* context) const {
nullptr,
&parameters,
num_heads_,
scale,
mask_filter_value_,
scale,
is_unidirectional_,
past_present_share_buffer,
false));

Expand Down
1 change: 1 addition & 0 deletions onnxruntime/contrib_ops/cpu/bert/multihead_attention.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ class MultiHeadAttention final : public OpKernel, public AttentionCPUBase {
protected:
int num_heads_; // number of attention heads
float mask_filter_value_;
bool is_unidirectional_;
};

} // namespace contrib
Expand Down
8 changes: 5 additions & 3 deletions onnxruntime/contrib_ops/cpu/bert/multihead_attention_helper.h
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ Status CheckInputs(const T* query,
int num_heads,
float mask_filter_value,
float scale,
bool is_unidirectional,
bool past_present_share_buffer,
bool dmmha_packing) {
// key_padding_mask (K/V) : (B) or (2*B + 1) or (B, L) or None
Expand Down Expand Up @@ -315,7 +316,7 @@ Status CheckInputs(const T* query,
output_parameters->head_size = hidden_size / num_heads;
output_parameters->v_head_size = v_hidden_size / num_heads;
output_parameters->num_heads = num_heads;
output_parameters->is_unidirectional = false;
output_parameters->is_unidirectional = is_unidirectional;
output_parameters->past_present_share_buffer = past_present_share_buffer;
output_parameters->mask_filter_value = mask_filter_value;
output_parameters->mask_type = mask_type;
Expand All @@ -342,6 +343,7 @@ Status CheckInputs(const T* query,
int num_heads,
float mask_filter_value,
float scale,
bool is_unidirectional,
bool past_present_share_buffer,
bool dmmha_packing,
int max_threads_per_block) {
Expand All @@ -350,8 +352,8 @@ Status CheckInputs(const T* query,
}

return CheckInputs(query, key, value, bias, key_padding_mask, relative_position_bias, past_key, past_value,
past_seq_len, parameters, num_heads, mask_filter_value, scale, past_present_share_buffer,
dmmha_packing);
past_seq_len, parameters, num_heads, mask_filter_value, scale, is_unidirectional,
past_present_share_buffer, dmmha_packing);
}

} // namespace multihead_attention_helper
Expand Down
47 changes: 30 additions & 17 deletions onnxruntime/contrib_ops/cpu/bert/rotary_embedding.cc
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,13 @@ ONNX_OPERATOR_TYPED_KERNEL_EX(
template <typename T>
RotaryEmbedding<T>::RotaryEmbedding(const OpKernelInfo& info) : OpKernel(info) {
scale = info.GetAttrOrDefault<float>("scale", 1.0);
rotary_embedding_dim = static_cast<int>(info.GetAttrOrDefault<int64_t>("rotary_embedding_dim", 0));
num_heads = static_cast<int>(info.GetAttrOrDefault<int64_t>("num_heads", 0));
interleaved = (info.GetAttrOrDefault<int64_t>("interleaved", 0) == 1);

if (rotary_embedding_dim > 0) {
ORT_ENFORCE(num_heads > 0, "num_heads must be provided if rotary_embedding_dim is specified");
}
}

template <typename T>
Expand All @@ -42,6 +48,8 @@ Status RotaryEmbedding<T>::Compute(OpKernelContext* context) const {
position_ids,
cos_cache,
sin_cache,
num_heads,
rotary_embedding_dim,
&parameters));

Tensor* output = context->Output(0, input->Shape());
Expand All @@ -59,61 +67,66 @@ Status RotaryEmbedding<T>::Compute(OpKernelContext* context) const {

const int batch_size = parameters.batch_size;
const int sequence_length = parameters.sequence_length;
const int num_heads = parameters.num_heads;
const int n_heads = parameters.num_heads;
const int head_size = parameters.head_size;
const int position_ids_format = parameters.position_ids_format;
const int half_head_size = head_size / 2;
const int rotary_emb_dim = parameters.rotary_embedding_dim;
const int half_rotary_emb_dim = rotary_emb_dim / 2;

// Default input tensor shape is [batch, seq_len, hidden_size]
int head_stride = head_size;
int seq_stride = num_heads * head_stride;
int seq_stride = n_heads * head_stride;
int batch_stride = sequence_length * seq_stride;
if (parameters.transposed) {
// Transposed input tensor shape is [batch, num_heads, seq_len, head_size]
// Transposed input tensor shape is [batch, n_heads, seq_len, head_size]
seq_stride = head_size;
head_stride = sequence_length * seq_stride;
batch_stride = num_heads * head_stride;
batch_stride = n_heads * head_stride;
}

AllocatorPtr allocator;
ORT_RETURN_IF_ERROR(context->GetTempSpaceAllocator(&allocator));
auto* tp = context->GetOperatorThreadPool();

const int loop_len = batch_size * sequence_length * num_heads;
const double cost = static_cast<double>(head_size);
const int loop_len = batch_size * sequence_length * n_heads;
const double cost = static_cast<double>(rotary_emb_dim);
ThreadPool::TryParallelFor(tp, loop_len, cost, [&](std::ptrdiff_t begin, std::ptrdiff_t end) {
for (std::ptrdiff_t ptr = begin; ptr != end; ++ptr) {
const int b = static_cast<int>((ptr / num_heads) / sequence_length);
const int s = static_cast<int>((ptr / num_heads) % sequence_length);
const int n = static_cast<int>(ptr % num_heads);
const int b = static_cast<int>((ptr / n_heads) / sequence_length);
const int s = static_cast<int>((ptr / n_heads) % sequence_length);
const int n = static_cast<int>(ptr % n_heads);

const int block_offset = b * batch_stride + s * seq_stride + n * head_stride;

const T* input_data = input_src + block_offset;
T* output_data = output_dest + block_offset;

// Cache is (M, H/2)
// Cache is (M, H/2) or (M, rotary_embedding_dim/2)
const int position_id = (position_ids_format == 0)
? static_cast<int>(pos_ids_data[0]) + s
: static_cast<int>(pos_ids_data[b * sequence_length + s]);
const int cache_offset = position_id * half_head_size;
const int cache_offset = position_id * half_rotary_emb_dim;
const T* cos_data = cos_cache_data + cache_offset;
const T* sin_data = sin_cache_data + cache_offset;

int cache_idx = 0;
T sign = 0;
int j = 0;
for (int i = 0; i < head_size; i++) {
for (int i = 0; i < rotary_emb_dim; i++) {
if (interleaved) {
cache_idx = (i / 2) % half_head_size;
cache_idx = (i / 2) % half_rotary_emb_dim;
sign = (i % 2 == 0) ? static_cast<T>(-1) : static_cast<T>(1);
j = (i % 2 == 0) ? i + 1 : i - 1; // i - sign
} else {
cache_idx = i % half_head_size;
sign = (i < half_head_size) ? static_cast<T>(-1) : static_cast<T>(1);
j = (i + half_head_size) % head_size;
cache_idx = i % half_rotary_emb_dim;
sign = (i < half_rotary_emb_dim) ? static_cast<T>(-1) : static_cast<T>(1);
j = (i + half_rotary_emb_dim) % rotary_emb_dim;
}
output_data[i] = input_data[i] * cos_data[cache_idx] + sign * input_data[j] * sin_data[cache_idx];
}
for (int i = rotary_emb_dim; i < head_size; i++) {
output_data[i] = input_data[i];
}
}
});

Expand Down
2 changes: 2 additions & 0 deletions onnxruntime/contrib_ops/cpu/bert/rotary_embedding.h
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ class RotaryEmbedding final : public OpKernel {

protected:
float scale;
int num_heads;
int rotary_embedding_dim;
bool interleaved;
};

Expand Down
55 changes: 31 additions & 24 deletions onnxruntime/contrib_ops/cpu/bert/rotary_embedding_helper.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,26 +11,29 @@

// Parameters deduced from node attributes and inputs/outputs.
struct RotaryParameters {
int batch_size; // Batch size used by input
int sequence_length; // Sequence length used by input
int hidden_size; // Hidden size used by input
int head_size; // Head size used by cos/sin cache * 2
int num_heads; // num_heads = hidden_size / head_size
int max_sequence_length; // Sequence length used by cos/sin cache
int position_ids_format; // Format of position ids - 0 is (1), 1 is (batch_size, sequence_length)
bool transposed; // Whether the input tensor has been transposed into (batch, num_heads, seq_len, hidden)
int batch_size; // Batch size used by input
int sequence_length; // Sequence length used by input
int hidden_size; // Hidden size used by input
int head_size; // Head size
int rotary_embedding_dim; // Rotary embedding dimension.
int num_heads; // num_heads = hidden_size / head_size
int max_sequence_length; // Sequence length used by cos/sin cache
int position_ids_format; // Format of position ids - 0 is (1), 1 is (batch_size, sequence_length)
bool transposed; // Whether the input tensor has been transposed into (batch, num_heads, seq_len, hidden)
};

template <typename T>
Status CheckInputs(const T* input,
const T* position_ids,
const T* cos_cache,
const T* sin_cache,
int num_heads,
int rotary_embedding_dim,
void* parameters) {
// input : (batch_size, sequence_length, hidden_size)
// position ids : (1) or (batch_size, sequence_length)
// cos cache : (max_sequence_length, head_size / 2)
// sin cache : (max_sequence_length, head_size / 2)
// cos cache : (max_sequence_length, rotary_embedding_dim / 2)
// sin cache : (max_sequence_length, rotary_embedding_dim / 2)

// Check input
const auto& input_dims = input->Shape().GetDims();
Expand Down Expand Up @@ -60,6 +63,12 @@
"the same shape");
}

// Check num_heads and rotary_embedding_dim
if (rotary_embedding_dim > 0 && num_heads == 0) {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "num_heads must be provided if rotary_embedding_dim is ",
"specified");
}

// Get attributes from inputs
int batch_size = static_cast<int>(input_dims[0]);
int sequence_length = static_cast<int>(input_dims[1]);
Expand All @@ -73,8 +82,13 @@
transposed = true;
}
int max_sequence_length = static_cast<int>(cos_cache_dims[0]);
int head_size = static_cast<int>(cos_cache_dims[1]) * 2;
int num_heads = hidden_size / head_size;
int head_size = rotary_embedding_dim == 0 ? static_cast<int>(cos_cache_dims[1]) * 2
: static_cast<int>(hidden_size / num_heads);
if (rotary_embedding_dim > 0 && rotary_embedding_dim > head_size) {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "rotary_embedding_dim must be less than or equal to ",
"head_size");
}

int position_ids_format = -1;

// Check position_ids input shapes
Expand All @@ -91,23 +105,15 @@
} else {
position_ids_format = 0;
}

// Check cos_cache input shapes
if (max_sequence_length != static_cast<int>(cos_cache_dims[0])) {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Input 'cos_cache' dimension 0 should be same as ",
"max_sequence_length, got ", cos_cache_dims[0]);
}
if ((head_size / 2) != static_cast<int>(cos_cache_dims[1])) {
if ((head_size / 2) != static_cast<int>(cos_cache_dims[1]) && (rotary_embedding_dim > 0 && (rotary_embedding_dim / 2) != static_cast<int>(cos_cache_dims[1]))) {

Check warning on line 114 in onnxruntime/contrib_ops/cpu/bert/rotary_embedding_helper.h

View workflow job for this annotation

GitHub Actions / cpplint

[cpplint] onnxruntime/contrib_ops/cpu/bert/rotary_embedding_helper.h#L114

Lines should be <= 120 characters long [whitespace/line_length] [2]
Raw output
onnxruntime/contrib_ops/cpu/bert/rotary_embedding_helper.h:114:  Lines should be <= 120 characters long  [whitespace/line_length] [2]
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Input 'cos_cache' dimension 1 should be same as ",
"head_size / 2, got ", cos_cache_dims[1]);
}
// Check sin_cache input shapes
if (max_sequence_length != static_cast<int>(sin_cache_dims[0])) {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Input 'sin_cache' dimension 0 should be same as ",
"max_sequence_length, got ", sin_cache_dims[0]);
}
if ((head_size / 2) != static_cast<int>(sin_cache_dims[1])) {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Input 'sin_cache' dimension 1 should be same as ",
"head_size / 2, got ", sin_cache_dims[1]);
"head_size / 2 or rotary_embedding_dim / 2, got ", cos_cache_dims[1]);
}

// Set rotary parameters
Expand All @@ -117,10 +123,11 @@
output_parameters->sequence_length = sequence_length;
output_parameters->hidden_size = hidden_size;
output_parameters->head_size = head_size;
output_parameters->num_heads = num_heads;
output_parameters->num_heads = num_heads > 0 ? num_heads : static_cast<int>(hidden_size / head_size);
output_parameters->max_sequence_length = max_sequence_length;
output_parameters->position_ids_format = position_ids_format;
output_parameters->transposed = transposed;
output_parameters->rotary_embedding_dim = rotary_embedding_dim > 0 ? rotary_embedding_dim : head_size;
}

return Status::OK();
Expand Down
Loading
Loading