Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[js/webgpu] Support capture and replay for jsep #18989

Merged
merged 33 commits into from
Jan 31, 2024

Conversation

qjia7
Copy link
Contributor

@qjia7 qjia7 commented Jan 3, 2024

Description

This PR expands the graph capture capability to JS EP, which is similar to #16081. But for JS EP, we don't use the CUDA Graph, instead, we records all gpu commands and replay them, which removes most of the cpu overhead to avoid the the situation that gpu waiting for cpu.

mobilenetv2-12 becomes 3.7ms from 6ms on NV 3090 and becomes 3.38ms from 4.58ms on Intel A770.

All limitations are similar with CUDA EP:

  1. Models with control-flow ops (i.e. If, Loop and Scan ops) are not supported.
  2. Usage of graph capture is limited to models where-in all ops in the model can be partitioned to the JS EP or CPU EP and no memory copy between them.
  3. Shapes of inputs/outputs cannot change across inference calls.
  4. IObinding is required.

The usage is like below:
Method 1: specify outputs buffers explicitly.

    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);
   
    // prepare the inputBuffer/outputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   const fetches = {
       'output': ort.Tensor.fromGpuBuffer(outputBuffer, { dataType: 'float32', dims: [1, 1000] })
   };

   let results = await session.run(feeds, fetches);  // The first run will begin to capture the graph.

   // update inputBuffer content
  ... ...
   results = = await session.run(feeds, fetches);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();

Method 2: Don't specify outputs buffers explicitly. Internally, when graph capture is enabled, it will set all outputs location to 'gpu-buffer'.

    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);

    // prepare the inputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   let results = await session.run(feeds);  // The first run will begin to capture the graph.
   
   // update inputBuffer content
  ... ...
   results = = await session.run(feeds);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();

@qjia7 qjia7 force-pushed the record_and_replay branch from 08ab978 to 0ce4a6a Compare January 8, 2024 09:04
@qjia7 qjia7 force-pushed the record_and_replay branch from 02091c3 to c4cfde0 Compare January 10, 2024 09:21
@qjia7 qjia7 changed the title [Don't review][js/webgpu] Support capture and replay for jsep [js/webgpu] Support capture and replay for jsep Jan 11, 2024
@qjia7 qjia7 marked this pull request as ready for review January 11, 2024 08:08
@qjia7
Copy link
Contributor Author

qjia7 commented Jan 11, 2024

@skottmckay @fs-eire @guschmue Please take a look, thanks!

@guschmue guschmue added the ep:WebGPU ort-web webgpu provider label Jan 12, 2024
js/common/lib/inference-session.ts Outdated Show resolved Hide resolved
js/web/lib/wasm/binding/ort-wasm.d.ts Outdated Show resolved Hide resolved
js/web/lib/wasm/binding/ort-wasm.d.ts Outdated Show resolved Hide resolved
js/web/lib/wasm/jsep/backend-webgpu.ts Outdated Show resolved Hide resolved
js/web/lib/wasm/jsep/backend-webgpu.ts Show resolved Hide resolved
js/web/lib/wasm/jsep/backend-webgpu.ts Show resolved Hide resolved
js/web/lib/wasm/jsep/webgpu/types.ts Show resolved Hide resolved
js/web/lib/wasm/jsep/webgpu/types.ts Outdated Show resolved Hide resolved
Copy link
Contributor Author

@qjia7 qjia7 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@fs-eire Please take a another look, thanks.

js/web/lib/wasm/jsep/backend-webgpu.ts Show resolved Hide resolved
js/web/lib/wasm/jsep/backend-webgpu.ts Show resolved Hide resolved
js/web/lib/wasm/jsep/webgpu/types.ts Show resolved Hide resolved
@qjia7 qjia7 requested a review from fs-eire January 26, 2024 06:05
@qjia7 qjia7 requested a review from fs-eire January 29, 2024 07:38
captureBegin(): void {
LOG_DEBUG('info', 'captureBegin');
let sessionCommandList = this.capturedCommandList.get(this.currentSessionId!);
let sessionPendingKernels = this.capturedPendingKernels.get(this.currentSessionId!);

Check warning

Code scanning / CodeQL

Useless assignment to local variable Warning

The initial value of sessionPendingKernels is unused, since it is always overwritten.
@fs-eire
Copy link
Contributor

fs-eire commented Jan 30, 2024

/azp run Windows ARM64 QNN CI Pipeline,Windows x64 QNN CI Pipeline,Windows CPU CI Pipeline,Windows GPU CI Pipeline,Windows GPU TensorRT CI Pipeline,ONNX Runtime Web CI Pipeline,Linux CPU CI Pipeline,Linux CPU Minimal Build E2E CI Pipeline,Linux GPU CI Pipeline,Linux GPU TensorRT CI Pipeline

@fs-eire
Copy link
Contributor

fs-eire commented Jan 30, 2024

/azp run Linux OpenVINO CI Pipeline,Linux QNN CI Pipeline,MacOS CI Pipeline,orttraining-amd-gpu-ci-pipeline,orttraining-linux-ci-pipeline,orttraining-linux-gpu-ci-pipeline,orttraining-ortmodule-distributed,onnxruntime-python-checks-ci-pipeline,onnxruntime-binary-size-checks-ci-pipeline,Android CI Pipeline

@fs-eire
Copy link
Contributor

fs-eire commented Jan 30, 2024

/azp run iOS CI Pipeline,ONNX Runtime React Native CI Pipeline

Copy link

Azure Pipelines successfully started running 2 pipeline(s).

Copy link

Azure Pipelines successfully started running 9 pipeline(s).

Copy link

Azure Pipelines successfully started running 10 pipeline(s).

@fs-eire fs-eire merged commit 85cef0a into microsoft:main Jan 31, 2024
77 checks passed
@qjia7 qjia7 deleted the record_and_replay branch January 31, 2024 08:10
fs-eire pushed a commit that referenced this pull request Mar 15, 2024
This PR expands the graph capture capability to JS EP, which is similar
to #16081. But for JS EP, we don't use the CUDA Graph, instead, we
records all gpu commands and replay them, which removes most of the cpu
overhead to avoid the the situation that gpu waiting for cpu.

mobilenetv2-12 becomes 3.7ms from 6ms on NV 3090 and becomes 3.38ms from
4.58ms on Intel A770.

All limitations are similar with CUDA EP:
1. Models with control-flow ops (i.e. If, Loop and Scan ops) are not
supported.
2. Usage of graph capture is limited to models where-in all ops in the
model can be partitioned to the JS EP or CPU EP and no memory copy
between them.
3. Shapes of inputs/outputs cannot change across inference calls.
4. IObinding is required.

The usage is like below:
Method 1: specify outputs buffers explicitly.
```
    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);

    // prepare the inputBuffer/outputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   const fetches = {
       'output': ort.Tensor.fromGpuBuffer(outputBuffer, { dataType: 'float32', dims: [1, 1000] })
   };

   let results = await session.run(feeds, fetches);  // The first run will begin to capture the graph.

   // update inputBuffer content
  ... ...
   results = = await session.run(feeds, fetches);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();
```
Method 2: Don't specify outputs buffers explicitly. Internally, when
graph capture is enabled, it will set all outputs location to
'gpu-buffer'.
```
    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);

    // prepare the inputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   let results = await session.run(feeds);  // The first run will begin to capture the graph.

   // update inputBuffer content
  ... ...
   results = = await session.run(feeds);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();
fs-eire pushed a commit that referenced this pull request Mar 15, 2024
This PR expands the graph capture capability to JS EP, which is similar
to #16081. But for JS EP, we don't use the CUDA Graph, instead, we
records all gpu commands and replay them, which removes most of the cpu
overhead to avoid the the situation that gpu waiting for cpu.

mobilenetv2-12 becomes 3.7ms from 6ms on NV 3090 and becomes 3.38ms from
4.58ms on Intel A770.

All limitations are similar with CUDA EP:
1. Models with control-flow ops (i.e. If, Loop and Scan ops) are not
supported.
2. Usage of graph capture is limited to models where-in all ops in the
model can be partitioned to the JS EP or CPU EP and no memory copy
between them.
3. Shapes of inputs/outputs cannot change across inference calls.
4. IObinding is required.

The usage is like below:
Method 1: specify outputs buffers explicitly.
```
    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);

    // prepare the inputBuffer/outputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   const fetches = {
       'output': ort.Tensor.fromGpuBuffer(outputBuffer, { dataType: 'float32', dims: [1, 1000] })
   };

   let results = await session.run(feeds, fetches);  // The first run will begin to capture the graph.

   // update inputBuffer content
  ... ...
   results = = await session.run(feeds, fetches);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();
```
Method 2: Don't specify outputs buffers explicitly. Internally, when
graph capture is enabled, it will set all outputs location to
'gpu-buffer'.
```
    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);

    // prepare the inputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   let results = await session.run(feeds);  // The first run will begin to capture the graph.

   // update inputBuffer content
  ... ...
   results = = await session.run(feeds);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();
YUNQIUGUO pushed a commit that referenced this pull request Mar 29, 2024
### Description
This PR is a preview of cherry-picks for ort-web to `rel-1.17.3` based
on `rel-1.17.2`.

<details>

<summary>Changes of ort-web to cherry-pick</summary>

The following commits are from main branch.

`o` stands for pick, and `x` stands for skip.
```
o   2e0a388 [js/webgpu] Add HardSigmoid support (#19215)
o   d226e40 [js/webgpu] set query type in onRunStart (#19202)
o   61610ff [js/webgpu] Add FusedConv clip test case (#18900)
o   a33b5bd [JS/WebGPU] Added Uniforms to SkipLayerNorm. (#18788)
o   591f90c [js/webgpu] Fix issue of timestamp query (#19258)
o   7252c6e [WebNN EP] Support WebNN async API with Asyncify (#19145)
o   5b06505 [js/webgpu] Fix Tanh explosion (#19201)
o   656ca66 [js/webgpu] Support uniforms for conv, conv transpose, conv grouped (#18753)
o   a3f0e24 [js/webgpu] Support f16 uniform (#19098)
o   9e69606 fix f16 for attention, enable slice and flatten for more types (#19262)
o   624b4e2 [js/webgpu] Remove enableShapesUniforms (#19279)
o   90883a3 [js/webgpu] Add hardSigmoid activation for fusedConv (#19233)
o   85cef0a [js/webgpu] Support capture and replay for jsep (#18989)
o   d73131c [js/webgpu] Use DataType as uniform cpu type (#19281)
o   dd1f6cc [js/webgpu] resolve codescan alert (#19343)
o   3a2ab19 [js/webgpu] Refactor createTensorShapeVariables (#18883)
o   efc17e7 [js/webgpu] Fix the undefined push error (#19366)
 x  50806a7 [js/web] support external data in npm test (#19377)
o   ccbe264 [js/webgpu] Add LeakyRelu activation for fusedConv (#19369)
o   5ff27ef [js/webgpu] support customop FastGelu (#19392)
 x  03be65e [js/web] fix types exports in package.json (#19458)
o   06269a3 [js/webgpu] allow uint8 tensors for webgpu (#19545)
o   dfeda90 [JS/WebGPU] Add MatMulNBits (#19446)
o   1b48054 [js/webgpu] Create Split indices helpers by rank, not by shape (#19554)
o   3fe2c13 [js] small fix to workaround formatter (#19400)
 x  70567a4 [js/web] use ApiTensor insteadof onnxjs Tensor in TensorResultValidator (#19358)
o   6e04e36 [js/common] upgrade tsc in common from 4.9.5 to 5.2.2 (#19317)
o   58f4921 [js] changes to allow Float16Array if any polyfill is available (#19305)
o   57d6819 [js/web] Fix fused-conv is not included in npm test (#19581)
o   ebd220b Misspelling in README.md (#19433)
o   38c3432 Bump ip from 1.1.8 to 1.1.9 in /js/react_native (#19582)
o   fe82fcc [js/webgpu] Fix Conv2DTransposeMatMul f16 compilation failure (#19596)
o   76a2a48 Bump ip from 1.1.8 to 1.1.9 in /js/react_native/e2e (#19583)
o   29b1106 [node] Switch to setImmediate to avoid starving the Node.js event loop (#19610)
o   ae3d73c [JS/WebGPU] Fix Split and Where to handle corner cases. (#19613)
o   aec2389 [js/webgpu] allows a ProgramInfo's RunData to use zero sized output (#19614)
o   bb43a0f [js/webgpu] minor fixes to make tinyllama work (#19564)
o   0edb035 [js/web] fix suite test list for zero sized tensor (#19638)
o   3cb81cd [js/common] move 'env.wasm.trace' to 'env.trace' (#19617)
o   e30618d [js/webgpu] use Headless for webgpu test by default (#19702)
o   f06164e [js/web] transfer input buffer back to caller thread (#19677)
 x  a788514 [js/web] dump debug logs for karma for diagnose purpose (#19785)
o   24b72d2 [JS/WebGPU] Preserve zero size input tensor dims. (#19737)
o   4538d31 [js/webgpu] expose a few properties in WebGPU API (#19857)
o   53de2d8 [js/webgpu] Enable GroupedConvVectorize path (#19791)
o   ed250b8 [JS/WebGPU] Optimize MatMulNBits (#19852)
 x  e771a76 [js/test] align web test runner flags with ort.env (#19790)
o   79e50ae [js/web] rewrite backend resolve to allow multiple EPs (#19735)
o   acb0df2 Fix #19931 broken Get Started link of "ONNX Runtime JavaScript API" page (#19932)
o   b29849a [js/common] fix typedoc warnings (#19933)
o   afdab62 Bump follow-redirects from 1.15.4 to 1.15.6 in /js/web (#19949)
o   28ad6c3 Bump follow-redirects from 1.15.4 to 1.15.6 in /js/node (#19951)
o   7e0d424 accumulate in fp32 for Reduce* (#19868)
o   4c6a6a3 [js/webgpu] Fix NAN caused by un-initialized buffer in instance-norm (#19387)
o   01c7aaf [js/webgpu] allow setting env.webgpu.adapter (#19940)
o   c45cff6 [js/webgpu] fix maxpool / fp16 (#19981)
```

</details>

<details>
<summary>Cherry-pick commandlines</summary>

```sh
git cherry-pick 2e0a388
git cherry-pick d226e40
git cherry-pick 61610ff
git cherry-pick a33b5bd
git cherry-pick 591f90c
git cherry-pick 7252c6e
git cherry-pick 5b06505
git cherry-pick 656ca66
git cherry-pick a3f0e24
git cherry-pick 9e69606
git cherry-pick 624b4e2
git cherry-pick 90883a3
git cherry-pick 85cef0a  #<<<<< Note: conflicts
git cherry-pick d73131c
git cherry-pick dd1f6cc
git cherry-pick 3a2ab19
git cherry-pick efc17e7
git cherry-pick ccbe264
git cherry-pick 5ff27ef
git cherry-pick 06269a3
git cherry-pick dfeda90
git cherry-pick 1b48054
git cherry-pick 3fe2c13
git cherry-pick 6e04e36
git cherry-pick 58f4921
git cherry-pick 57d6819
git cherry-pick ebd220b
git cherry-pick 38c3432
git cherry-pick fe82fcc
git cherry-pick 76a2a48
git cherry-pick 29b1106
git cherry-pick ae3d73c
git cherry-pick aec2389
git cherry-pick bb43a0f
git cherry-pick 0edb035
git cherry-pick 3cb81cd
git cherry-pick e30618d
git cherry-pick f06164e
git cherry-pick 24b72d2
git cherry-pick 4538d31
git cherry-pick 53de2d8
git cherry-pick ed250b8
git cherry-pick 79e50ae
git cherry-pick acb0df2
git cherry-pick b29849a
git cherry-pick afdab62
git cherry-pick 28ad6c3
git cherry-pick 7e0d424
git cherry-pick 4c6a6a3
git cherry-pick 01c7aaf
git cherry-pick c45cff6
```
</details>

<details>
<summary>Cherry-pick conflicts</summary>

- 85cef0a #18989
this change is for enabling graph capture feature for JSEP, and it is
done after ROCM EP enabled graph capture feature. However, the ROCM EP
graph capture feature is not cherry-picked in rel-1.17.2.
</details>

---------

Signed-off-by: dependabot[bot] <[email protected]>
Co-authored-by: Jiajia Qin <[email protected]>
Co-authored-by: Xu Xing <[email protected]>
Co-authored-by: satyajandhyala <[email protected]>
Co-authored-by: Yang Gu <[email protected]>
Co-authored-by: Wanming Lin <[email protected]>
Co-authored-by: Jiajie Hu <[email protected]>
Co-authored-by: Guenther Schmuelling <[email protected]>
Co-authored-by: Matttttt <[email protected]>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Segev Finer <[email protected]>
Co-authored-by: Belem Zhang <[email protected]>
siweic0 pushed a commit to siweic0/onnxruntime-web that referenced this pull request May 9, 2024
### Description
This PR expands the graph capture capability to JS EP, which is similar
to microsoft#16081. But for JS EP, we don't use the CUDA Graph, instead, we
records all gpu commands and replay them, which removes most of the cpu
overhead to avoid the the situation that gpu waiting for cpu.

mobilenetv2-12 becomes 3.7ms from 6ms on NV 3090 and becomes 3.38ms from
4.58ms on Intel A770.

All limitations are similar with CUDA EP:
1. Models with control-flow ops (i.e. If, Loop and Scan ops) are not
supported.
2. Usage of graph capture is limited to models where-in all ops in the
model can be partitioned to the JS EP or CPU EP and no memory copy
between them.
3. Shapes of inputs/outputs cannot change across inference calls.
4. IObinding is required.

The usage is like below:
Method 1: specify outputs buffers explicitly.
```
    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);
   
    // prepare the inputBuffer/outputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   const fetches = {
       'output': ort.Tensor.fromGpuBuffer(outputBuffer, { dataType: 'float32', dims: [1, 1000] })
   };

   let results = await session.run(feeds, fetches);  // The first run will begin to capture the graph.

   // update inputBuffer content
  ... ...
   results = = await session.run(feeds, fetches);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();
```
Method 2: Don't specify outputs buffers explicitly. Internally, when
graph capture is enabled, it will set all outputs location to
'gpu-buffer'.
```
    const sessionOptions = {
        executionProviders: [
          {
            name: "webgpu",
          },
        ],
        enableGraphCapture: true,
      };
    const session = await ort.InferenceSession.create('./models/mobilenetv2-12.onnx', sessionOptions);

    // prepare the inputBuffer
    ... ...

   const feeds = {
       'input': ort.Tensor.fromGpuBuffer(inputBuffer, { dataType: 'float32', dims })
   };

   let results = await session.run(feeds);  // The first run will begin to capture the graph.
   
   // update inputBuffer content
  ... ...
   results = = await session.run(feeds);  // The 2ed run and after will directly call replay to execute the graph.

  ... ...
   session.release();
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ep:WebGPU ort-web webgpu provider
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants