Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update sdxl demo #18889

Merged
merged 3 commits into from
Dec 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ These optimizations are firstly carried out on CUDA EP. They may not work on oth
| [demo_txt2img.py](./demo_txt2img.py) | Demo of text to image generation using Stable Diffusion models except XL. |
| [optimize_pipeline.py](./optimize_pipeline.py) | Optimize Stable Diffusion ONNX models exported from Huggingface diffusers or optimum |
| [benchmark.py](./benchmark.py) | Benchmark latency and memory of OnnxRuntime, xFormers or PyTorch 2.0 on stable diffusion. |
| [benchmark_turbo.py](./benchmark_controlnet.py)| Benchmark latency of PyTorch or Stable-Fast with canny control net. |
| [benchmark_controlnet.py](./benchmark_controlnet.py)| Benchmark latency of canny control net. |

## Run demo with docker

Expand Down Expand Up @@ -379,97 +379,6 @@ Common settings for below test results:
| ------------------------------ | ---------------------- | ------ | ----- | ----- | ----------- | ----------- |
| runwayml/stable-diffusion-v1-5 | TRUE | 512 | 512 | 50 | 5 | 1 |

#### Results of RTX 3060 (Windows 11)

| engine | version | provider | batch size | average latency | first run memory MB | second run memory MB |
| ----------- | ----------------------- | --------------------- | ---------- | --------------- | ------------------- | -------------------- |
| onnxruntime | 1.14.1 | CUDA | 1 | 4.8 | 4,117 | 4,625 |
| torch | 2.0.0+cu117 | default | 1 | 5.6 | 4,325 | 4,047 |
| torch | 1.13.1+cu117 | xformers | 1 | 6.0 | 9,124 | 9,130 |
| onnxruntime | 1.14.1 | CUDA | 4 | 17.7 | 6,659 | 6,659 |
| torch | 2.0.0+cu117 | default | 4 | 20.1 | 6,421 | 6,907 |
| torch | 1.13.1+cu117 | xformers | 4 | 21.6 | 10,407 | 10,409 |
| onnxruntime | 1.14.1 | CUDA | 8 | 33.5 | 6,663 | 6,663 |
| torch | 2.0.0+cu117 | default | 8 | 39.5 | 10,767 | 10,813 |
| torch | 1.13.1+cu117 | xformers | 8 | 41.1 | 10,825 | 9,255 |


#### Results of A100-SXM4-40GB (Ubuntu 20.04)
| engine | version | provider | batch size | average latency | first run memory MB | second run memory MB |
| ----------- | ----------------------- | --------------------- | ---------- | --------------- | ------------------- | -------------------- |
| onnxruntime | 1.14.1 | CUDA | 1 | 1.1 | 6,883 | 7,395 |
| torch | 2.0.0+cu117 | default | 1 | 1.5 | 13,828 | 4,400 |
| torch | 2.0.0+cu117 | compile | 1 | 1.8 | 13,892 | 4,386 |
| onnxruntime | 1.14.1 | CUDA | 4 | 3.7 | 7,381 | 7,381 |
| torch | 2.0.0+cu117 | default | 4 | 3.9 | 31,278 | 6,870 |
| torch | 2.0.0+cu117 | compile | 4 | 3.4 | 31,364 | 6,880 |
| onnxruntime | 1.14.1 | CUDA | 8 | 6.9 | 7,411 | 7,411 |
| torch | 2.0.0+cu117 | default | 8 | 7.6 | 31,660 | 10,122 |
| torch | 2.0.0+cu117 | compile | 8 | 6.5 | 31,800 | 10,308 |
| onnxruntime | 1.14.1 | CUDA | 16 | 13.6 | 11,479 | 11,479 |
| torch | 2.0.0+cu117 | default | 16 | 14.8 | 32,306 | 16,520 |
| torch | 2.0.0+cu117 | compile | 16 | 12.6 | 32,636 | 16,898 |

#### Results of A100-PCIE-80GB (Ubuntu 20.04)
| engine | version | provider | batch size | average latency | first run memory MB | second run memory MB |
| ----------- | ----------------------- | --------------------- | ---------- | --------------- | ------------------- | -------------------- |
| tensorrt | 8.6.1 | default | 1 | 1.00 | 9,056 | 9,056 |
| onnxruntime | 1.16.0 nightly | tensorrt | 1 | 1.09 | 11,250 | 11,250 |
| onnxruntime | 1.16.0 nightly | tensorrt (cuda graph) | 1 | 0.96 | 11,382 | 11,382 |
| onnxruntime | 1.16.0 nightly | cuda | 1 | 1.11 | 4,760 | 5,144 |
| onnxruntime | 1.16.0 nightly | cuda (cuda graph) | 1 | 1.04 | 5,230 | 5,390 |
| tensorrt | 8.6.1 | default | 4 | 3.39 | 9,072 | 9,072 |
| onnxruntime | 1.16.0 nightly | tensorrt | 4 | 3.60 | 11,266 | 11,266 |
| onnxruntime | 1.16.0 nightly | tensorrt (cuda graph) | 4 | 3.43 | 11,428 | 11,428 |

#### Results of V100-PCIE-16GB (Ubuntu 20.04)

Results from Standard_NC6s_v3 Azure virtual machine:

| engine | version | provider | batch size | average latency | first run memory MB | second run memory MB |
| ----------- | ----------------------- | --------------------- | ---------- | --------------- | ------------------- | -------------------- |
| onnxruntime | 1.14.1 | CUDA | 1 | 2.7 | 12,646 | 7,152 |
| torch | 2.0.0+cu117 | compile | 1 | 3.2 | 13,317 | 3,909 |
| torch | 2.0.0+cu117 | default | 1 | 2.7 | 13,343 | 3,921 |
| torch | 1.13.1+cu117 | xformers | 1 | 3.5 | 14,979 | 10,449 |
| onnxruntime | 1.14.1 | CUDA | 4 | 8.4 | 7,114 | 7,114 |
| torch | 2.0.0+cu117 | compile | 4 | 8.0 | 13,897 | 6,821 |
| torch | 2.0.0+cu117 | default | 4 | 8.7 | 13,873 | 6,607 |
| torch | 1.13.1+cu117 | xformers | 4 | 9.1 | 12,969 | 8,421 |
| onnxruntime | 1.14.1 | CUDA | 8 | 15.9 | 7,120 | 7,120 |
| torch | 2.0.0+cu117 | compile | 8 | 15.5 | 14,669 | 10,355 |
| torch | 2.0.0+cu117 | default | 8 | 17.0 | 14,469 | 9,657 |
| torch | 1.13.1+cu117 | xformers | 8 | 17.4 | 15,593 | 9,133 |

#### Results of T4 (Ubuntu 20.04)

To make the result stable, we lock the frequency of T4 GPU like
`sudo nvidia-smi --lock-gpu-clocks=990` for fair comparison. See [nvidia blog](https://developer.nvidia.com/blog/advanced-api-performance-setstablepowerstate/) for more information. Note that performance might be slightly better without locking frequency.

Results are from Standard_NC4as_T4_v3 Azure virtual machine:

| engine | version | provider | batch size | average latency | first run memory MB | second run memory MB |
| ----------- | ----------------------- | --------------------- | ---------- | --------------- | ------------------- | -------------------- |
| onnxruntime | 1.14.1 | CUDA | 1 | 5.6 | 4,925 | 4,925 |
| onnxruntime | 1.15.1 | CUDA | 1 | 5.5 | 3,738 | 4,250 |
| onnxruntime | 1.15.1 (tensorrt 8.6.1) | Tensorrt | 1 | 4.8 | 10,710 | 10,710 |
| onnxruntime | 1.16.0 nightly | Tensorrt (cuda graph) | 1 | 4.7 | 11,746 | 10,746 |
| tensorrt | 8.6.1 | default | 1 | 5.0 | 8,530 | 8,530 |
| torch | 1.13.1+cu117 | xformers | 1 | 6.9 | 14,845 | 10,317 |
| torch | 2.0.0+cu117 | compile | 1 | 6.0 | 12,989 | 3,841 |
| torch | 2.0.0+cu117 | default | 1 | 6.4 | 12,987 | 3,841 |
| onnxruntime | 1.14.1 | CUDA | 4 | 23.0 | 6,977 | 6,977 |
| onnxruntime | 1.15.1 | CUDA | 4 | 22.6 | 6,298 | 6,298 |
| onnxruntime | 1.15.1 (tensorrt 8.6.1) | Tensorrt | 4 | 21.8 | 10,746 | 10,746 |
| tensorrt | 8.6.1 | default | 4 | 22.2 | 8,542 | 8,542 |
| torch | 1.13.1+cu117 | xformers | 4 | 25.8 | 12,819 | 8,269 |
| torch | 2.0.0+cu117 | compile | 4 | 22.2 | 14,637 | 6,583 |
| torch | 2.0.0+cu117 | default | 4 | 25.2 | 14,409 | 6,355 |
| onnxruntime | 1.14.1 | CUDA | 8 | 46.4 | 6,779 | 6,779 |
| torch | 1.13.1+cu117 | xformers | 8 | 51.4 | 14,827 | 9,001 |
| torch | 2.0.0+cu117 | compile | 8 | 46.5 | 12,595 | 10,171 |
| torch | 2.0.0+cu117 | default | 8 | 50.7 | 11,955 | 9,531 |

#### Results of MI250X, 1 GCD (Ubuntu 20.04)

| engine | version | provider | batch size | average latency | first run memory MB | second run memory MB |
Expand Down
Loading
Loading