Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WebNN EP] Mark and fallback unsupported op for WebNN CPU backend #18472

Merged
merged 3 commits into from
Nov 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion onnxruntime/core/providers/webnn/builders/helper.cc
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ std::vector<std::vector<NodeIndex>> GetSupportedNodes(const GraphViewer& graph_v
const auto* node(graph_viewer.GetNode(node_idx));
bool supported = false;
// Firstly check if platform supports the WebNN op.
if (CheckSingleOp(node->OpType(), wnn_builder_)) {
if (CheckSingleOp(node->OpType(), wnn_builder_, device_type)) {
LOGS(logger, VERBOSE) << "Operator type: [" << node->OpType() << "] is supported by browser";
supported = IsNodeSupported(*node, graph_viewer, device_type, logger);
}
Expand Down
186 changes: 104 additions & 82 deletions onnxruntime/core/providers/webnn/builders/helper.h
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,11 @@
GPU,
};

typedef struct {
std::string opName;
bool isCpuSupported; // The WebNN CPU backend XNNPack supports it (not about the CPU EP).
} WebnnOpInfo;

bool GetShape(const NodeArg& node_arg, std::vector<int64_t>& shape, const logging::Logger& logger);

template <typename T>
Expand Down Expand Up @@ -128,90 +133,107 @@
const emscripten::val& wnn_builder_,
const WebnnDeviceType device_type,
const logging::Logger& logger);
static const InlinedHashMap<std::string, std::string> op_map = {
{"Abs", "abs"},
{"Add", "add"},
{"ArgMax", "argMax"},
{"ArgMin", "argMin"},
{"AveragePool", "averagePool2d"},
{"BatchNormalization", "meanVarianceNormalization"},
{"Cast", "cast"},
{"Ceil", "ceil"},
{"Clip", "clamp"},
{"Concat", "concat"},
{"Conv", "conv2d"},
{"ConvTranspose", "convTranspose2d"},
{"Cos", "cos"},
{"Div", "div"},
{"Elu", "elu"},
{"Equal", "equal"},
{"Erf", "erf"},
{"Exp", "exp"},
{"Expand", "expand"},
{"Flatten", "flattenTo2d"},
{"Floor", "floor"},
{"Gather", "gather"},
{"Gemm", "gemm"},
{"GlobalAveragePool", "averagePool2d"},
{"GlobalMaxPool", "maxPool2d"},
{"GlobalLpPool", "l2Pool2d"},
{"Greater", "greater"},
{"GreaterOrEqual", "greaterOrEqual"},
{"GroupNormalization", "meanVarianceNormalization"},
{"HardSigmoid", "hardSigmoid"},
{"HardSwish", "hardSwish"},
{"Identity", "identity"},
{"InstanceNormalization", "meanVarianceNormalization"},
{"LayerNormalization", "meanVarianceNormalization"},
{"LeakyRelu", "leakyRelu"},
{"Less", "lesser"},
{"LessOrEqual", "lesserOrEqual"},
{"Log", "log"},
{"LpPool", "l2Pool2d"},
{"MatMul", "matmul"},
{"Max", "max"},
{"MaxPool", "maxPool2d"},
{"Min", "min"},
{"Mul", "mul"},
{"Neg", "neg"},
{"Not", "logicalNot"},
{"Pad", "pad"},
{"Pow", "pow"},
{"PRelu", "prelu"},
{"Reciprocal", "reciprocal"},
{"ReduceL1", "reduceL1"},
{"ReduceL2", "reduceL2"},
{"ReduceLogSum", "reduceLogSum"},
{"ReduceLogSumExp", "reduceLogSumExp"},
{"ReduceMax", "reduceMax"},
{"ReduceMean", "reduceMean"},
{"ReduceMin", "reduceMin"},
{"ReduceProd", "reduceProduct"},
{"ReduceSum", "reduceSum"},
{"ReduceSumSquare", "reduceSumSquare"},
{"Relu", "relu"},
{"Reshape", "reshape"},
{"Resize", "resample2d"},
{"Shape", "slice"},
{"Sigmoid", "sigmoid"},
{"Softplus", "softplus"},
{"Softsign", "softsign"},
{"Sin", "sin"},
{"Slice", "slice"},
{"Softmax", "softmax"},
{"Split", "split"},
{"Sqrt", "sqrt"},
{"Squeeze", "squeeze"},
{"Sub", "sub"},
{"Tan", "tan"},
{"Tanh", "tanh"},
{"Transpose", "transpose"},
{"Unsqueeze", "unsqueeze"},
{"Where", "elementwiseIf"},
static const InlinedHashMap<std::string, WebnnOpInfo> op_map = {
{"Abs", {"abs", true}},
{"Add", {"add", true}},
{"ArgMax", {"argMax", false}},
{"ArgMin", {"argMin", false}},
{"AveragePool", {"averagePool2d", true}},
{"BatchNormalization", {"meanVarianceNormalization", false}},
{"Cast", {"cast", false}},
{"Ceil", {"ceil", true}},
{"Clip", {"clamp", true}},
{"Concat", {"concat", true}},
{"Conv", {"conv2d", true}},
{"ConvTranspose", {"convTranspose2d", true}},
{"Cos", {"cos", false}},
{"Div", {"div", true}},
{"Elu", {"elu", true}},
{"Equal", {"equal", false}},
{"Erf", {"erf", false}},
{"Exp", {"exp", false}},
{"Expand", {"expand", false}},
{"Flatten", {"flattenTo2d", false}},
{"Floor", {"floor", true}},
{"Gather", {"gather", false}},
{"Gemm", {"gemm", true}},
{"GlobalAveragePool", {"averagePool2d", true}},
{"GlobalMaxPool", {"maxPool2d", true}},
{"GlobalLpPool", {"l2Pool2d", false}},
{"Greater", {"greater", false}},
{"GreaterOrEqual", {"greaterOrEqual", false}},
{"GroupNormalization", {"meanVarianceNormalization", false}},
{"HardSigmoid", {"hardSigmoid", false}},
{"HardSwish", {"hardSwish", true}},
{"Identity", {"identity", false}},
{"InstanceNormalization", {"meanVarianceNormalization", false}},
{"LayerNormalization", {"meanVarianceNormalization", false}},
{"LeakyRelu", {"leakyRelu", true}},
{"Less", {"lesser", false}},
{"LessOrEqual", {"lesserOrEqual", false}},
{"Log", {"log", false}},
{"LpPool", {"l2Pool2d", false}},
{"MatMul", {"matmul", false}},
{"Max", {"max", true}},
{"MaxPool", {"maxPool2d", true}},
{"Min", {"min", true}},
{"Mul", {"mul", true}},
{"Neg", {"neg", true}},
{"Not", {"logicalNot", false}},
{"Pad", {"pad", true}},
{"Pow", {"pow", true}},
{"PRelu", {"prelu", true}},
{"Reciprocal", {"reciprocal", false}},
{"ReduceL1", {"reduceL1", false}},
{"ReduceL2", {"reduceL2", false}},
{"ReduceLogSum", {"reduceLogSum", false}},
{"ReduceLogSumExp", {"reduceLogSumExp", false}},
{"ReduceMax", {"reduceMax", false}},
{"ReduceMean", {"reduceMean", true}},
{"ReduceMin", {"reduceMin", false}},
{"ReduceProd", {"reduceProduct", false}},
{"ReduceSum", {"reduceSum", true}},
{"ReduceSumSquare", {"reduceSumSquare", false}},
{"Relu", {"relu", true}},
{"Reshape", {"reshape", true}},
{"Resize", {"resample2d", true}},
{"Shape", {"slice", true}},
{"Sigmoid", {"sigmoid", true}},
{"Softplus", {"softplus", false}},
{"Softsign", {"softsign", false}},
{"Sin", {"sin", false}},
{"Slice", {"slice", true}},
{"Softmax", {"softmax", true}},
{"Split", {"split", true}},
{"Sqrt", {"sqrt", false}},
{"Squeeze", {"squeeze", false}},
{"Sub", {"sub", true}},
{"Tan", {"tan", false}},
{"Tanh", {"tanh", true}},
{"Transpose", {"transpose", true}},
{"Unsqueeze", {"unsqueeze", false}},
{"Where", {"elementwiseIf", false}},
};

inline bool CheckSingleOp(const std::string& op_type, const emscripten::val& wnn_builder_) {
return op_map.find(op_type) != op_map.end() && wnn_builder_[op_map.find(op_type)->second].as<bool>();
inline bool CheckSingleOp(const std::string& op_type, const emscripten::val& wnn_builder_,

Check warning on line 218 in onnxruntime/core/providers/webnn/builders/helper.h

View workflow job for this annotation

GitHub Actions / Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <string> for string [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webnn/builders/helper.h:218: Add #include <string> for string [build/include_what_you_use] [4]
const WebnnDeviceType device_type) {
// Returns false if the op_type is not listed in the op_map.
if (op_map.find(op_type) == op_map.end()) {
return false;
}
// Returns false if the WebNN op has not been implemented in MLGraphBuilder in current browser.
if (!wnn_builder_[op_map.find(op_type)->second.opName].as<bool>()) {
return false;
}
// The current WebNN CPU (XNNPack) backend supports a limited op list, and we'd rather
// fall back early to the ORT CPU EP rather than fail in the WebNN "cpu" deviceType.
// This is a workaround because the op may be included in MLGraphBuilder for DirectML
// backend but without XNNPack implementation in Chromium.
if (!op_map.find(op_type)->second.isCpuSupported) {
return false;
}

return true;
}

constexpr std::array<ONNX_NAMESPACE::TensorProto_DataType, 1> supported_cpu_data_types = {
Expand Down
Loading