Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[JS/Web] Added Uniforms support to binary ops. #18260

Merged
merged 17 commits into from
Nov 7, 2023
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
17 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 36 additions & 42 deletions js/web/lib/wasm/jsep/webgpu/ops/binary-op.ts
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ import {TensorView} from '../../tensor-view';
import {BroadcastUtil, ShapeUtil} from '../../util';
import {ComputeContext, ProgramInfo} from '../types';

import {inputVariable, outputVariable, ShaderHelper} from './common';
import {createTensorShapeVariables, enableShapesUniforms, inputVariable, outputVariable, ShaderHelper} from './common';

type BuiltinFunctionName = string;
type BinaryCustomExpression = (expressionA: string, expressionB: string) => string;
Expand All @@ -18,10 +18,7 @@ type BinaryFunctionCall = BuiltinFunctionName|BinaryCustomExpression|{
const createBinaryOpProgramShader =
(shaderHelper: ShaderHelper, dimsA: readonly number[], dimsB: readonly number[], dimsOutput: readonly number[],
vectorize: boolean, doBroadcast: boolean, funcCall: BinaryFunctionCall, typeA: number, typeB: number,
typeOutput: number, additionalImplementation?: string) => {
const outputSize = ShapeUtil.size(dimsOutput);
const vecSize = Math.ceil(outputSize / 4);

typeOutput: number, useShapesUniforms: boolean, additionalImplementation?: string) => {
let expressionScalar: BinaryCustomExpression;
let expressionVector: BinaryCustomExpression;
if (typeof funcCall === 'string') {
Expand All @@ -33,31 +30,12 @@ const createBinaryOpProgramShader =
expressionVector = funcCall.vector;
}

let broadcastImpl = '';
const output = outputVariable('outputData', typeOutput, dimsOutput, 4);
const a = inputVariable('aData', typeA, dimsA, 4);
const b = inputVariable('bData', typeB, dimsB, 4);
if (doBroadcast) {
const calcOffsetImpl = (dims: readonly number[]) => {
const strides = ShapeUtil.computeStrides(dims);
const offsets: string[] = [];
for (let i = dims.length - 1; i >= 0; i--) {
const idx = output.indicesGet('outputIndices', i + dimsOutput.length - dims.length);
offsets.push(`${strides[i]}u * (${idx} % ${dims[i]}u)`);
}
return offsets.length > 0 ? offsets.join('+') : '0u';
};

broadcastImpl = `
fn calcOffsetA(outputIndices: ${output.type.indices}) -> u32 {
return ${calcOffsetImpl(dimsA)};
}

fn calcOffsetB(outputIndices: ${output.type.indices}) -> u32 {
return ${calcOffsetImpl(dimsB)};
}
`;
}
const inputAShapeOrRank = useShapesUniforms ? dimsA.length : dimsA;
const inputBShapeOrRank = useShapesUniforms ? dimsB.length : dimsB;
const outputShapeOrRank = useShapesUniforms ? dimsOutput.length : dimsOutput;
const output = outputVariable('outputData', typeOutput, outputShapeOrRank, 4);
const a = inputVariable('aData', typeA, inputAShapeOrRank, 4);
const b = inputVariable('bData', typeB, inputBShapeOrRank, 4);

let assignment: string;
if (vectorize) {
Expand All @@ -73,8 +51,8 @@ const createBinaryOpProgramShader =
} else {
assignment = `
let outputIndices = ${output.offsetToIndices('global_idx * 4u')};
let offsetA = calcOffsetA(outputIndices);
let offsetB = calcOffsetB(outputIndices);
let offsetA = ${a.broadcastedIndicesToOffset('outputIndices', output)};
let offsetB = ${b.broadcastedIndicesToOffset('outputIndices', output)};
${
output.setByOffset(
'global_idx', expressionVector(a.getByOffset('offsetA / 4u'), b.getByOffset('offsetB / 4u')))}
Expand All @@ -94,8 +72,8 @@ const createBinaryOpProgramShader =
const expressionB = `bData[indexB${x}][componentB${x}]`;
return `
let outputIndices${x} = ${output.offsetToIndices(`global_idx * 4u + ${x}u`)};
let offsetA${x} = calcOffsetA(outputIndices${x});
let offsetB${x} = calcOffsetB(outputIndices${x});
let offsetA${x} = ${a.broadcastedIndicesToOffset(`outputIndices${x}`, output)};
let offsetB${x} = ${b.broadcastedIndicesToOffset(`outputIndices${x}`, output)};
let indexA${x} = offsetA${x} / 4u;
let indexB${x} = offsetB${x} / 4u;
let componentA${x} = offsetA${x} % 4u;
Expand All @@ -122,13 +100,12 @@ const createBinaryOpProgramShader =
}

return `
${shaderHelper.declareVariables(a, b, output)}
${shaderHelper.registerUniform('vec_size', 'u32').declareVariables(a, b, output)}

${additionalImplementation ?? ''}
${broadcastImpl}

${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes(vecSize)}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.vec_size')}
${assignment}
}`;
};
Expand All @@ -144,6 +121,7 @@ const createBinaryOpProgramInfo =

// TODO: deal with zero-sized tensors (eg. dims=[1,0])

const cacheKeyAux = [isBroadcast];
if (isBroadcast) {
const calculatedShape = BroadcastUtil.calcShape(a.dims, b.dims, false);
if (!calculatedShape) {
Expand All @@ -153,7 +131,8 @@ const createBinaryOpProgramInfo =
outputSize = ShapeUtil.size(outputShape);
const isAOneElement = ShapeUtil.size(a.dims) === 1;
const isBOneElement = ShapeUtil.size(b.dims) === 1;

cacheKeyAux.push(isAOneElement);
cacheKeyAux.push(isBOneElement);
// check whether vectorize can be enabled
let sharedDimension = 1;
for (let i = 1; i < outputShape.length; i++) {
Expand All @@ -172,16 +151,31 @@ const createBinaryOpProgramInfo =
// element-wise
vectorize = true;
}

cacheKeyAux.push(vectorize);
const useShapesUniforms = enableShapesUniforms(a.dims.length) && enableShapesUniforms(b.dims.length) &&
enableShapesUniforms(outputShape.length);
return {
name,
shaderCache: {hint: cacheKey},
shaderCache: {
hint: cacheKey + cacheKeyAux.map((x) => x.toString()).join('_'),
inputDependencies: useShapesUniforms ? ['rank', 'rank'] : ['dims', 'dims'],
},
getShaderSource: (shaderHelper) => createBinaryOpProgramShader(
shaderHelper, a.dims, b.dims, outputShape, vectorize, isBroadcast, funcCall, a.dataType, b.dataType,
outputDataType, additionalImplementation),
outputDataType, useShapesUniforms, additionalImplementation),
getRunData: () => ({
outputs: [{dims: outputShape, dataType: outputDataType}],
dispatchGroup: {x: Math.ceil(outputSize / 64 /* workgroup size */ / 4 /* component size */)}
dispatchGroup: {x: Math.ceil(outputSize / 64 /* workgroup size */ / 4 /* component size */)},
programUniforms: useShapesUniforms ?
[
{type: 'uint32', data: Math.ceil(ShapeUtil.size(outputShape) / 4)},
...createTensorShapeVariables(a.dims),
...createTensorShapeVariables(b.dims),
...createTensorShapeVariables(outputShape),
] :
[
{type: 'uint32', data: Math.ceil(ShapeUtil.size(outputShape) / 4)},
],
}),
};
};
Expand Down
2 changes: 1 addition & 1 deletion js/web/lib/wasm/jsep/webgpu/ops/common.ts
Original file line number Diff line number Diff line change
Expand Up @@ -805,4 +805,4 @@ export const getBroadcastDims = (inShape: readonly number[], outShape: readonly
};

// TODO: remove this limitation once >4D dims are supported by uniform.
export const enableShapesUniforms = (rank: number): boolean => rank <= 4;
export const enableShapesUniforms = (rank: number): boolean => rank <= 4 && rank > 0;
satyajandhyala marked this conversation as resolved.
Show resolved Hide resolved
satyajandhyala marked this conversation as resolved.
Show resolved Hide resolved
Loading