-
Notifications
You must be signed in to change notification settings - Fork 3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Update eval_squad to use API of latest optimum #17918
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
wangyems
approved these changes
Oct 13, 2023
jchen351
pushed a commit
that referenced
this pull request
Oct 18, 2023
Update eval_squad with latest optimum. Tested with: * optimum 1.13.1 * transformers 4.31.0 * onnxruntime-gpu 1.16.0 * onnx 1.14.1 * datasets 2.14.5 * evaluate 0.4.0 * torch version 2.2.0.dev20230920+cu121 Example output in A100: {'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name': 'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
TedThemistokleous
pushed a commit
to ROCm/onnxruntime
that referenced
this pull request
Nov 27, 2023
Update eval_squad with latest optimum. Tested with: * optimum 1.13.1 * transformers 4.31.0 * onnxruntime-gpu 1.16.0 * onnx 1.14.1 * datasets 2.14.5 * evaluate 0.4.0 * torch version 2.2.0.dev20230920+cu121 Example output in A100: {'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name': 'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
TedThemistokleous
added a commit
to ROCm/onnxruntime
that referenced
this pull request
Nov 27, 2023
…ript Update eval_squad to use API of latest optimum (microsoft#17918)
kleiti
pushed a commit
to kleiti/onnxruntime
that referenced
this pull request
Mar 22, 2024
Update eval_squad with latest optimum. Tested with: * optimum 1.13.1 * transformers 4.31.0 * onnxruntime-gpu 1.16.0 * onnx 1.14.1 * datasets 2.14.5 * evaluate 0.4.0 * torch version 2.2.0.dev20230920+cu121 Example output in A100: {'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name': 'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Description
Update eval_squad with latest optimum.
Tested with:
Example output in A100:
{'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name': 'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
Motivation and Context