Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update eval_squad to use API of latest optimum #17918

Merged
merged 2 commits into from
Oct 13, 2023
Merged

Conversation

tianleiwu
Copy link
Contributor

Description

Update eval_squad with latest optimum.

Tested with:

  • optimum 1.13.1
  • transformers 4.31.0
  • onnxruntime-gpu 1.16.0
  • onnx 1.14.1
  • datasets 2.14.5
  • evaluate 0.4.0
  • torch version 2.2.0.dev20230920+cu121

Example output in A100:

{'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name': 'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}

Motivation and Context

@tianleiwu tianleiwu merged commit c695de9 into main Oct 13, 2023
86 of 91 checks passed
@tianleiwu tianleiwu deleted the tlwu/update_eval_squad branch October 13, 2023 17:39
jchen351 pushed a commit that referenced this pull request Oct 18, 2023
Update eval_squad with latest optimum. 

Tested with:
* optimum 1.13.1
* transformers 4.31.0
* onnxruntime-gpu 1.16.0
* onnx 1.14.1
* datasets 2.14.5
* evaluate 0.4.0
* torch version 2.2.0.dev20230920+cu121

Example output in A100:

{'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570,
'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005,
'HasAns_total': 10570, 'best_exact': 86.66035950804162,
'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104,
'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds':
84.74025378189981, 'samples_per_second': 124.73410838731417,
'latency_in_seconds': 0.008017053337928081, 'provider':
'CUDAExecutionProvider', 'disable_fused_attention': False,
'pretrained_model_name':
'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path':
'./bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx',
'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
TedThemistokleous pushed a commit to ROCm/onnxruntime that referenced this pull request Nov 27, 2023
Update eval_squad with latest optimum. 

Tested with:
* optimum 1.13.1
* transformers 4.31.0
* onnxruntime-gpu 1.16.0
* onnx 1.14.1
* datasets 2.14.5
* evaluate 0.4.0
* torch version 2.2.0.dev20230920+cu121

Example output in A100:

{'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570,
'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005,
'HasAns_total': 10570, 'best_exact': 86.66035950804162,
'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104,
'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds':
84.74025378189981, 'samples_per_second': 124.73410838731417,
'latency_in_seconds': 0.008017053337928081, 'provider':
'CUDAExecutionProvider', 'disable_fused_attention': False,
'pretrained_model_name':
'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path':
'./bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx',
'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
TedThemistokleous added a commit to ROCm/onnxruntime that referenced this pull request Nov 27, 2023
…ript

Update eval_squad to use API of latest optimum (microsoft#17918)
kleiti pushed a commit to kleiti/onnxruntime that referenced this pull request Mar 22, 2024
Update eval_squad with latest optimum. 

Tested with:
* optimum 1.13.1
* transformers 4.31.0
* onnxruntime-gpu 1.16.0
* onnx 1.14.1
* datasets 2.14.5
* evaluate 0.4.0
* torch version 2.2.0.dev20230920+cu121

Example output in A100:

{'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570,
'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005,
'HasAns_total': 10570, 'best_exact': 86.66035950804162,
'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104,
'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds':
84.74025378189981, 'samples_per_second': 124.73410838731417,
'latency_in_seconds': 0.008017053337928081, 'provider':
'CUDAExecutionProvider', 'disable_fused_attention': False,
'pretrained_model_name':
'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path':
'./bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx',
'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants