Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[JS/Web] Add ConvTranspose implementation using MatMul #17573

Merged
merged 18 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
243 changes: 243 additions & 0 deletions js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

// sampled from [@tensorflow/tfjs] tfjs-backend-webgpu/src/conv_backprop_mm_webgpu.ts
//
// modified to fit the needs of the project

import {LOG_DEBUG} from '../../../log';
import {TensorView} from '../../../tensor-view';
import {ShapeUtil} from '../../../util';
import {GpuDataType, ProgramInfo, ProgramMetadata} from '../../types';
import {ConvTransposeAttributes} from '../conv-transpose';

import {Activation, activationFnSnippet, biasActivationSnippet, typeSnippet} from './activation_util';
import {utilFunctions} from './conv_util';
import {makeMatMulPackedSource, makeMatMulPackedVec4Source} from './matmul_packed_webgpu';

const conv2dTransposeCommonSnippet =
(isChannelsLast: boolean, addBias = false, activation?: Activation, hasPreluActivationWeights = false,
innerElementSize = 4): string => {
const getWSnippet = (innerElementSize: number) => {
switch (innerElementSize) {
case 1:
return 'return W[getIndexFromCoords4D(coord, wShape)];';
case 4:
return `
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
let v0 = W[getIndexFromCoords4D(coord, wShape)];
let v1 = W[getIndexFromCoords4D(coord1, wShape)];
let v2 = W[getIndexFromCoords4D(coord2, wShape)];
let v3 = W[getIndexFromCoords4D(coord3, wShape)];
return vec4<f32>(v0, v1, v2, v3);
`;
default:
throw new Error(`innerElementSize ${innerElementSize} is not supported.`);
}
};
const coordASnippet = isChannelsLast ? `
let coord = vec4<i32>(batch, iXR, iXC, xCh);
` :
`
let coord = vec4<i32>(batch, xCh, iXR, iXC);
`;

const coordResSnippet = isChannelsLast ? `
let coords = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
` :
`
let coords = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`;

const xHeight = isChannelsLast ? 'outBackprop[1]' : 'outBackprop[2]';
const xWidth = isChannelsLast ? 'outBackprop[2]' : 'outBackprop[3]';
const row = isChannelsLast ? 'row' : 'col';
const col = isChannelsLast ? 'col' : 'row';

const readASnippet = `
let inChannels = ${isChannelsLast ? 'outBackprop[3]' : 'outBackprop[1]'};
let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'};
let outRow = ${row} / outWidth;
let outCol = ${row} % outWidth;

let WRow = ${col} / (filterDims[1] * inChannels);
let WCol = ${col} / inChannels % filterDims[1];
let xR = f32(outRow - pads[0] + dilation[0] * WRow) / f32(strides[0]);
let xC = f32(outCol - pads[1] + dilation[1] * WCol) / f32(strides[1]);
if (xR < 0.0 || xR >= f32(${xHeight}) || fract(xR) > 0.0) {
return ${typeSnippet(innerElementSize)}(0.0);
}
if (xC < 0.0 || xC >= f32(${xWidth}) || fract(xC) > 0.0) {
return ${typeSnippet(innerElementSize)}(0.0);
}
let iXR = i32(xR);
let iXC = i32(xC);
let xCh = ${col} % inChannels;
${coordASnippet}
return x[getIndexFromCoords4D(coord, xShape)/${innerElementSize}];`;

const sampleA = isChannelsLast ? `
let col = colIn * ${innerElementSize};
if (row < dimAOuter && col < dimInner) {
${readASnippet}
}
return ${typeSnippet(innerElementSize)}(0.0);` :
`
let col = colIn * ${innerElementSize};
if (row < dimInner && col < dimBOuter) {
${readASnippet}
}
return ${typeSnippet(innerElementSize)}(0.0);`;

const sampleW = `
let col = colIn * ${innerElementSize};
let inChannels = ${isChannelsLast ? 'outBackprop[3]' : 'outBackprop[1]'};
let coordX = filterDims.x - 1 - row / (filterDims[1] * inChannels);
let coordY = filterDims.y - 1 - (row / inChannels) % filterDims[1];
if (${
isChannelsLast ? 'row < dimInner && col < dimBOuter' :
'row < dimInner && col < dimAOuter'} && coordX >= 0 && coordY >= 0) {
let rowInner = row % inChannels;
let coord = vec4<i32>(coordX, coordY, col, rowInner);
${getWSnippet(innerElementSize)}
}
return ${typeSnippet(innerElementSize)}(0.0);
`;


const userCode = `
${activationFnSnippet(activation, hasPreluActivationWeights, innerElementSize === 4, 4)}
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} {
${isChannelsLast ? sampleA : sampleW}
}

fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} {
${isChannelsLast ? sampleW : sampleA}
}

fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) {
let col = colIn * ${innerElementSize};
if (row < dimAOuter && col < dimBOuter) {
var value = valueInput;
let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'};
${coordResSnippet}
${biasActivationSnippet(addBias, activation)}
result[getIndexFromCoords4D(coords, outShape)/${innerElementSize}] = value;
}
}`;
return userCode;
};

export const createConv2DTransposeMatMulProgramInfo =
(inputs: readonly TensorView[], metadata: ProgramMetadata, attributes: ConvTransposeAttributes,
outputShape: readonly number[], dimAOuter: number, dimBOuter: number, dimInner: number, hasBias: boolean,
sequentialAccessByThreads: boolean): ProgramInfo => {
const isChannelsLast = attributes.format === 'NHWC';
const inChannels = isChannelsLast ? inputs[0].dims[3] : inputs[0].dims[1];
const batchSize = outputShape[0];
const outWidth = isChannelsLast ? outputShape[2] : outputShape[3];
const outHeight = isChannelsLast ? outputShape[1] : outputShape[2];
const outChannels = isChannelsLast ? outputShape[3] : outputShape[1];
const isVec4 =
isChannelsLast ? inChannels % 4 === 0 && outChannels % 4 === 0 : outWidth % 4 === 0 && outChannels % 4 === 0;

// TODO: fine tune size
const dispatchX = isChannelsLast ? outChannels : outWidth * outHeight;
const dispatchY = isChannelsLast ? outWidth * outHeight : outChannels;
const workGroupSize: [number, number, number] = isVec4 ?
[8, 8, 1] :
[(dispatchX <= 4 || dispatchY <= 4) ? 4 : 16, dispatchX > 4 && dispatchY <= 4 ? 4 : 16, 1];
const elementsPerThread =
isVec4 ? [4, 4, 1] : [dispatchX <= 4 ? 1 : 4, dispatchX > 4 && dispatchY <= 4 ? 1 : 4, 1];
const dispatch = [
Math.ceil(dispatchX / workGroupSize[0] / elementsPerThread[0]),
Math.ceil(dispatchY / workGroupSize[1] / elementsPerThread[1]),
Math.ceil(batchSize / workGroupSize[2] / elementsPerThread[2])
];

LOG_DEBUG('verbose', () => `[conv_backprop_mm_webgpu] dispatch = ${dispatch}`);

const innerElementSize = isVec4 ? 4 : 1;
const tileInner = Math.max(workGroupSize[0] * innerElementSize, workGroupSize[1]);


const declareInputs = [
`@group(0) @binding(0) var<storage, read> x: array<${isVec4 ? 'vec4<f32>' : 'f32'}>;`,
'@group(0) @binding(1) var<storage, read> W: array<f32>;'
];
let declareFunctions = '';
if (hasBias) {
declareInputs.push(`@group(0) @binding(2) var<storage, read> bias: array<${isVec4 ? 'vec4<f32>' : 'f32'}>;`);
declareFunctions += `
fn getBiasByOutputCoords(coords : vec4<i32>) -> ${isVec4 ? 'vec4<f32>' : 'f32'} {
return bias[coords.${isChannelsLast ? 'w' : 'y'}${isVec4 ? '/ 4' : ''}];
}`;
}
return {
...metadata,
outputs: [{dims: outputShape, dataType: inputs[0].dataType, gpuDataType: GpuDataType.default}],
dispatchGroup: () => ({x: dispatch[0], y: dispatch[1], z: dispatch[2]}),
getShaderSource: () => `
${utilFunctions}
${declareInputs.join('\n')}
@group(0) @binding(${declareInputs.length}) var<storage, read_write> result: array<${
isVec4 ? 'vec4<f32>' : 'f32'}>;
const outBackprop : vec4<i32> = vec4<i32>(${inputs[0].dims.join(',')});
const xShape : vec4<i32> = vec4<i32>(${inputs[0].dims.join(',')});
const wShape : vec4<i32> = vec4<i32>(${inputs[1].dims.join(',')});
const outShape : vec4<i32> = vec4<i32>(${outputShape.join(',')});
const outShapeStrides : vec3<i32> = vec3<i32>(${ShapeUtil.computeStrides(outputShape).slice(0, 3).join(',')});
const filterDims : vec2<i32> = vec2<i32>(${attributes.kernelShape[isChannelsLast ? 1 : 2]}, ${
attributes.kernelShape[isChannelsLast ? 2 : 3]});
const effectiveFilterDims : vec2<i32> = filterDims + vec2<i32>(
${
attributes.dilations[0] <= 1 ?
0 :
(attributes.kernelShape[isChannelsLast ? 1 : 2] - 1) * (attributes.dilations[0] - 1)},
${
attributes.dilations[1] <= 1 ?
0 :
(attributes.kernelShape[isChannelsLast ? 2 : 3] - 1) * (attributes.dilations[1] - 1)});
const pads : vec2<i32> = vec2<i32>(i32(effectiveFilterDims[0]) - 1 - (${
attributes.pads[0] + attributes.pads[2]})/2,
i32(effectiveFilterDims[1]) - 1 - (${
attributes.pads[1] + attributes.pads[3]})/2);
const strides : vec2<i32> = vec2<i32>(${attributes.strides[0]}, ${attributes.strides[1]});
const dilation : vec2<i32> = vec2<i32>(${attributes.dilations[0]}, ${attributes.dilations[1]});
const dimAOuter : i32 = ${dimAOuter};
const dimBOuter : i32 = ${dimBOuter};
const dimInner : i32 = ${dimInner};
${declareFunctions}
${conv2dTransposeCommonSnippet(isChannelsLast, hasBias, undefined, false, innerElementSize)}
${
isVec4 ?
makeMatMulPackedVec4Source(elementsPerThread, workGroupSize, undefined, !isChannelsLast, tileInner) :
makeMatMulPackedSource(
elementsPerThread, workGroupSize, undefined, !isChannelsLast, tileInner, false, undefined,
sequentialAccessByThreads)}`
};
};
Original file line number Diff line number Diff line change
Expand Up @@ -197,14 +197,14 @@ const createConvTranspose2DOpProgramShaderSource =
continue;
}
let idyC: u32 = u32(dyC);

var inputChannel = groupId * ${inputChannelsPerGroup};
for (var d2: u32 = 0; d2 < ${inputChannelsPerGroup}; d2 = d2 + 1) {
let inputChannel = groupId * ${inputChannelsPerGroup} + d2;
let xValue = ${
isChannelsLast ? dy.get('batch', 'idyR', 'idyC', 'inputChannel') :
dy.get('batch', 'inputChannel', 'idyR', 'idyC')};
let wValue = ${w.get('inputChannel', 'wOutChannel', 'u32(wRPerm)', 'u32(wCPerm)')};
dotProd = dotProd + xValue * wValue;
inputChannel = inputChannel + 1;
}
}
}
Expand Down
66 changes: 61 additions & 5 deletions js/web/lib/wasm/jsep/webgpu/ops/conv-transpose.ts
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,9 @@ import {ComputeContext, GpuDataType, ProgramInfoLoader, ProgramMetadata} from '.

import {createConvTranspose2DProgramInfo} from './3rd-party/conv_backprop_webgpu';
import {ConvAttributes} from './conv';
import {createConv2DTransposeMatMulProgramInfoLoader} from './conv2dtranspose-mm';
import {parseInternalActivationAttributes} from './fuse-utils';
import {createTransposeProgramInfo, TransposeAttributes, transposeProgramMetadata} from './transpose';

const computeTotalPad =
(inDim: number, stride: number, adj: number, kernel: number, dilation: number, outSize: number) =>
Expand Down Expand Up @@ -63,7 +65,7 @@ const getAdjustedConvTransposeAttributes =
<T extends ConvTransposeAttributes>(attributes: T, inputs: readonly TensorView[]): T => {
const kernelShape = attributes.kernelShape.slice();
// if kernelShape is not specified in the attributes of this op, infer it from the weight tensor dims
if (attributes.kernelShape.length === 0 || attributes.kernelShape.reduce((a, b) => a * b, 0) === 0) {
if (attributes.kernelShape.length === 0 || attributes.kernelShape.reduce((a, b) => a * b, 1) === 0) {
kernelShape.length = 0;
for (let i = 2; i < inputs[1].dims.length; ++i) {
kernelShape.push(inputs[1].dims[i]);
Expand Down Expand Up @@ -95,9 +97,11 @@ const getAdjustedConvTransposeAttributes =

// always return a new object so does not modify the original attributes
const newAttributes: T = Object.assign({}, attributes);
Object.assign(
newAttributes,
{kernelShape, pads, outputPadding, outputShape, dilations, strides, cacheKey: attributes.cacheKey});
const cacheKey = attributes.cacheKey + [
kernelShape.join('n,'), pads.join(','), strides.join(','), outputPadding.join(','), outputShape.join(','),
dilations.join(',')
].join('_');
Object.assign(newAttributes, {kernelShape, pads, outputPadding, outputShape, dilations, strides, cacheKey});
return newAttributes;
};

Expand Down Expand Up @@ -226,12 +230,64 @@ const createConvTranspose2DProgramInfoLoader =
};
};

// for transposing weight tensor from [C, M/group, KH, KW] to [KH, KW, M/group, C]
const weightTransposeAttribute: TransposeAttributes = createAttributeWithCacheKey({perm: [2, 3, 1, 0]});

const convTranspose2d =
(context: ComputeContext, inputs: readonly TensorView[], attributes: ConvTransposeAttributes): void => {
const adjustedAttributes = getAdjustedConvTransposeAttributes(attributes, inputs);
const isChannelsLast = attributes.format === 'NHWC';
const hasBias = inputs.length === 3;
if (adjustedAttributes.group !== 1) {
context.compute(createConvTranspose2DProgramInfoLoader(inputs, adjustedAttributes));
return;
}
const outputShape = adjustedAttributes.outputShape;
const outHeight = outputShape[isChannelsLast ? 1 : 2];
const outWidth = outputShape[isChannelsLast ? 2 : 3];
const outChannels = outputShape[isChannelsLast ? 3 : 1];
const weightHeight = inputs[1].dims[2];
const weightWidth = inputs[1].dims[3];
const inputChannels = inputs[0].dims[isChannelsLast ? 3 : 1];

const dimAOuter = isChannelsLast ? outHeight * outWidth : outChannels;
const dimBOuter = isChannelsLast ? outChannels : outHeight * outWidth;
const dimInner = weightHeight * weightWidth * inputChannels;

const sequentialAccessByThreads = /* backend.adapterInfo.isIntel() */ true;


context.compute(createConvTranspose2DProgramInfoLoader(inputs, adjustedAttributes));
// STEP.1: transpose weight
const transposedWeight = (context.kernelCustomData.wT as TensorView | undefined) ??
context.compute(
{
...transposeProgramMetadata,
cacheHint: weightTransposeAttribute.cacheKey,
get: () => createTransposeProgramInfo(inputs[1], weightTransposeAttribute.perm)
},
{inputs: [1], outputs: [attributes.wIsConst ? -2 : -1]})[0];
if (attributes.wIsConst && !context.kernelCustomData.wT) {
satyajandhyala marked this conversation as resolved.
Show resolved Hide resolved
context.kernelCustomData.wT = transposedWeight;
}

// STEP.2: prepare reshaped inputs
const convTransposeInputs = [inputs[0], transposedWeight];
if (hasBias) {
if (!isChannelsLast && inputs[2].dims.length === 1) {
convTransposeInputs.push(inputs[2].reshape([inputs[2].dims[0], 1, 1]));
} else {
convTransposeInputs.push(inputs[2]);
}
}

// STEP.3: compute matmul
context.compute(
createConv2DTransposeMatMulProgramInfoLoader(
convTransposeInputs, adjustedAttributes, outputShape, dimAOuter, dimBOuter, dimInner, hasBias,
sequentialAccessByThreads),
{inputs: convTransposeInputs});
};

const convTranspose1d = (context: ComputeContext, attributes: ConvTransposeAttributes): void => {
// extend the input to 2D by adding H dimension
const isChannelLast = attributes.format === 'NHWC';
Expand Down
29 changes: 29 additions & 0 deletions js/web/lib/wasm/jsep/webgpu/ops/conv2dtranspose-mm.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

import {TensorView} from '../../tensor-view';
import {GpuDataType, ProgramInfoLoader, ProgramMetadata} from '../types';

import {createConv2DTransposeMatMulProgramInfo} from './3rd-party/conv_backprop_mm_webgpu';
import {ConvTransposeAttributes} from './conv-transpose';


const createConv2DTransposeMatMulProgramMetadata = (hasBias: boolean, cacheHint: string): ProgramMetadata => ({
name: 'Conv2DTransposeMatMul',
inputTypes: hasBias ? [GpuDataType.default, GpuDataType.default, GpuDataType.default] :
[GpuDataType.default, GpuDataType.default],
cacheHint
});

export const createConv2DTransposeMatMulProgramInfoLoader =
(inputs: readonly TensorView[], attributes: ConvTransposeAttributes, outputShape: readonly number[],
dimAOuter: number, dimBOuter: number, dimInner: number, hasBias: boolean,
sequentialAccessByThreads: boolean): ProgramInfoLoader => {
const metadata = createConv2DTransposeMatMulProgramMetadata(hasBias, attributes.cacheKey);
return {
...metadata,
get: () => createConv2DTransposeMatMulProgramInfo(
inputs, metadata, attributes, outputShape, dimAOuter, dimBOuter, dimInner, hasBias,
sequentialAccessByThreads)
};
};
Loading
Loading