-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/main' into snnn/cuda12_docker
- Loading branch information
Showing
15 changed files
with
461 additions
and
37 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
181 changes: 181 additions & 0 deletions
181
onnxruntime/contrib_ops/cuda/collective/distributed_slice.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
// Distributed computation. | ||
#include "distributed_slice.h" | ||
#include "mpi_include.h" | ||
|
||
// ORT system. | ||
#include "core/providers/cpu/tensor/slice.h" | ||
#include "core/providers/cuda/tensor/slice.h" | ||
#include "core/providers/cuda/math/matmul.h" | ||
#include "core/providers/cuda/tensor/transpose.h" | ||
#include "core/providers/cuda/cuda_check_memory.h" | ||
|
||
namespace onnxruntime { | ||
namespace contrib { | ||
namespace cuda { | ||
|
||
#if defined(ORT_USE_NCCL) | ||
template <typename T, typename Tind> | ||
DistributedSlice<T, Tind>::DistributedSlice(const OpKernelInfo& info) : DistributedKernel(info) { | ||
} | ||
|
||
template <typename T, typename Tind> | ||
Status DistributedSlice<T, Tind>::ComputeInternal(OpKernelContext* context) const { | ||
const auto tensor_shard_data = context->Input<Tensor>(0); | ||
const auto tensor_shard_starts = context->Input<Tensor>(1); | ||
const auto tensor_shard_ends = context->Input<Tensor>(2); | ||
|
||
const TensorPartitionSpec& spec_data = input_shard_specs_[0]; | ||
const TensorPartitionSpec& spec_starts = input_shard_specs_[1]; | ||
const TensorPartitionSpec& spec_ends = input_shard_specs_[2]; | ||
const TensorPartitionSpec& spec_Y = output_shard_specs_[0]; | ||
|
||
const auto tensor_shard_axes = context->Input<Tensor>(3); | ||
const TensorPartitionSpec& spec_axes = input_shard_specs_[3]; | ||
|
||
if (spec_starts.HasShard() || | ||
spec_ends.HasShard() || | ||
spec_axes.HasShard() || | ||
(input_shard_specs_.size() > 4 && input_shard_specs_[4].HasShard())) | ||
ORT_THROW("DistributedSlice: shard on starts / ends / axes / steps are not supported yet."); | ||
|
||
std::vector<int64_t> input_starts; | ||
std::vector<int64_t> input_ends; | ||
auto starts_data = tensor_shard_starts->DataAsSpan<Tind>(); | ||
input_starts.resize(starts_data.size()); | ||
std::copy(starts_data.begin(), starts_data.end(), input_starts.begin()); | ||
auto ends_data = tensor_shard_ends->DataAsSpan<Tind>(); | ||
input_ends.resize(ends_data.size()); | ||
std::copy(ends_data.begin(), ends_data.end(), input_ends.begin()); | ||
|
||
std::vector<int64_t> input_axes; | ||
if (tensor_shard_axes) { | ||
auto axes_data = tensor_shard_axes->DataAsSpan<Tind>(); | ||
input_axes.resize(axes_data.size()); | ||
std::copy(axes_data.begin(), axes_data.end(), input_axes.begin()); | ||
} | ||
|
||
std::vector<int64_t> input_steps; | ||
const auto tensor_shard_steps = context->Input<Tensor>(4); | ||
if (tensor_shard_steps) { | ||
const TensorPartitionSpec& spec_steps = input_shard_specs_[4]; | ||
if (spec_steps.HasShard()) | ||
ORT_THROW("Not supported yet."); | ||
|
||
auto steps_data = tensor_shard_steps->DataAsSpan<Tind>(); | ||
input_steps.resize(steps_data.size()); | ||
std::copy(steps_data.begin(), steps_data.end(), input_steps.begin()); | ||
} | ||
|
||
if (spec_data.GetPartitionAxis() != -1 && | ||
std::find(input_axes.begin(), input_axes.end(), spec_data.GetPartitionAxis()) != input_axes.end()) { | ||
// shard on slice axes, reshard first | ||
auto tmp_spec_data = TensorPartitionSpec::CreateAllReplica(spec_data); | ||
auto tensor_data = ReshardTensor(this, context, spec_data, tmp_spec_data, nccl_->Rank(), tensor_shard_data); | ||
|
||
const auto& input_shape = tensor_data->Shape(); | ||
const auto input_dimensions = input_shape.GetDims(); | ||
if (input_dimensions.empty()) return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Cannot slice scalars"); | ||
|
||
SliceOp::PrepareForComputeMetadata compute_metadata(input_dimensions); | ||
ORT_RETURN_IF_ERROR(SliceBase::PrepareForCompute(input_starts, input_ends, input_axes, input_steps, compute_metadata)); | ||
TensorShape output_shape(compute_metadata.output_dims_); | ||
|
||
if (spec_Y.HasNoShard()) { | ||
ORT_RETURN_IF_ERROR(FuncSlice(this, | ||
context, | ||
tensor_data.get(), | ||
input_starts, | ||
input_ends, | ||
input_axes, | ||
input_steps, | ||
context->Output(0, output_shape))); | ||
} else { | ||
AllocatorPtr alloc; | ||
ORT_ENFORCE(context->GetTempSpaceAllocator(&alloc) == Status::OK()); | ||
auto dst_tensor = Tensor::Create(tensor_data->DataType(), output_shape, alloc); | ||
ORT_RETURN_IF_ERROR(FuncSlice(this, | ||
context, | ||
tensor_data.get(), | ||
input_starts, | ||
input_ends, | ||
input_axes, | ||
input_steps, | ||
dst_tensor.get())); | ||
auto tmp_spec_output = TensorPartitionSpec::CreateAllReplica(spec_Y); | ||
ReshardTensor(this, context, tmp_spec_output, spec_Y, nccl_->Rank(), dst_tensor.get(), 0); | ||
} | ||
} else { | ||
const auto& input_shape = tensor_shard_data->Shape(); | ||
const auto input_dimensions = input_shape.GetDims(); | ||
if (input_dimensions.empty()) return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "Cannot slice scalars"); | ||
|
||
SliceOp::PrepareForComputeMetadata compute_metadata(input_dimensions); | ||
ORT_RETURN_IF_ERROR(SliceBase::PrepareForCompute(input_starts, input_ends, input_axes, input_steps, compute_metadata)); | ||
TensorShape output_shape(compute_metadata.output_dims_); | ||
|
||
if (spec_Y.GetPartitionAxis() == spec_data.GetPartitionAxis()) { | ||
ORT_RETURN_IF_ERROR(FuncSlice(this, | ||
context, | ||
tensor_shard_data, | ||
input_starts, | ||
input_ends, | ||
input_axes, | ||
input_steps, | ||
context->Output(0, output_shape))); | ||
} else { | ||
AllocatorPtr alloc; | ||
ORT_ENFORCE(context->GetTempSpaceAllocator(&alloc) == Status::OK()); | ||
auto dst_tensor = Tensor::Create(tensor_shard_data->DataType(), output_shape, alloc); | ||
ORT_RETURN_IF_ERROR(FuncSlice(this, | ||
context, | ||
tensor_shard_data, | ||
input_starts, | ||
input_ends, | ||
input_axes, | ||
input_steps, | ||
dst_tensor.get())); | ||
ReshardTensor(this, context, spec_data, spec_Y, nccl_->Rank(), dst_tensor.get(), 0); | ||
} | ||
} | ||
|
||
return Status::OK(); | ||
} | ||
|
||
ONNX_OPERATOR_TYPED_KERNEL_EX( | ||
DistributedSlice, | ||
kMSDomain, | ||
1, | ||
float, | ||
kCudaExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.InputMemoryType(OrtMemTypeCPUInput, 1) | ||
.InputMemoryType(OrtMemTypeCPUInput, 2) | ||
.InputMemoryType(OrtMemTypeCPUInput, 3) | ||
.InputMemoryType(OrtMemTypeCPUInput, 4) | ||
.TypeConstraint("T", DataTypeImpl::GetTensorType<float>()) | ||
.TypeConstraint("Tind", DataTypeImpl::GetTensorType<int64_t>()), | ||
DistributedSlice<float, int64_t>); | ||
|
||
ONNX_OPERATOR_TYPED_KERNEL_EX( | ||
DistributedSlice, | ||
kMSDomain, | ||
1, | ||
MLFloat16, | ||
kCudaExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.InputMemoryType(OrtMemTypeCPUInput, 1) | ||
.InputMemoryType(OrtMemTypeCPUInput, 2) | ||
.InputMemoryType(OrtMemTypeCPUInput, 3) | ||
.InputMemoryType(OrtMemTypeCPUInput, 4) | ||
.TypeConstraint("T", DataTypeImpl::GetTensorType<MLFloat16>()) | ||
.TypeConstraint("Tind", DataTypeImpl::GetTensorType<int64_t>()), | ||
DistributedSlice<MLFloat16, int64_t>); | ||
|
||
#endif | ||
|
||
} // namespace cuda | ||
} // namespace contrib | ||
} // namespace onnxruntime |
32 changes: 32 additions & 0 deletions
32
onnxruntime/contrib_ops/cuda/collective/distributed_slice.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
#pragma once | ||
|
||
#include <algorithm> | ||
#include <tuple> | ||
#include <optional> | ||
#include <string> | ||
#include <nccl.h> | ||
#include <sstream> | ||
|
||
#include "sharding.h" | ||
|
||
namespace onnxruntime { | ||
namespace contrib { | ||
namespace cuda { | ||
|
||
#if defined(ORT_USE_NCCL) | ||
|
||
template <typename T, typename Tind> | ||
class DistributedSlice final : public DistributedKernel { | ||
public: | ||
explicit DistributedSlice(const OpKernelInfo& info); | ||
|
||
Status ComputeInternal(OpKernelContext* context) const override; | ||
}; | ||
|
||
#endif | ||
|
||
} // namespace cuda | ||
} // namespace contrib | ||
} // namespace onnxruntime |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.