Skip to content

Commit

Permalink
[js/webgpu] Support uniforms for matmul
Browse files Browse the repository at this point in the history
  • Loading branch information
axinging committed Nov 16, 2023
1 parent 6f9f653 commit fb16964
Show file tree
Hide file tree
Showing 5 changed files with 233 additions and 105 deletions.
103 changes: 64 additions & 39 deletions js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv2d_mm_webgpu.ts
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@
import {LOG_DEBUG} from '../../../log';
import {TensorView} from '../../../tensor-view';
import {ShapeUtil} from '../../../util';
import {ProgramInfo} from '../../types';
import {tensorTypeToWsglStorageType} from '../common';
import {ProgramInfo, ProgramUniform} from '../../types';
import {createTensorShapeVariables, enableShapesUniforms, inputVariable, outputVariable, ShaderHelper, tensorTypeToWsglStorageType} from '../common';
import {ConvAttributes} from '../conv';
import {getActivationSnippet} from '../fuse-utils';

Expand All @@ -32,13 +32,13 @@ import {utilFunctions} from './conv_util';
import {makeMatMulPackedSource, makeMatMulPackedVec4Source} from './matmul_packed_webgpu';

const conv2dCommonSnippet =
(isChannelsLast: boolean, fitAOuter: boolean, fitBOuter: boolean, fitInner: boolean, addBias = false,
attributes: ConvAttributes, innerElementSizeX = 4, innerElementSizeW = 4, innerElementSize = 4,
dataType = 'f32'): string => {
(xShapeStr: string, wShapeStr: string, outputShapeStr: string, isChannelsLast: boolean, fitAOuter: boolean,
fitBOuter: boolean, fitInner: boolean, addBias = false, attributes: ConvAttributes, innerElementSizeX = 4,
innerElementSizeW = 4, innerElementSize = 4, dataType = 'f32'): string => {
const getXSnippet = (innerElementSize: number) => {
switch (innerElementSize) {
case 1:
return 'resData = x[xIndex];';
return `resData = x[xIndex];`;
case 3:
return `resData = vec3<${dataType}>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);`;
case 4:
Expand All @@ -50,9 +50,9 @@ const conv2dCommonSnippet =
const getWSnippet = (innerElementSize: number) => {
switch (innerElementSize) {
case 1:
return 'return w[row * wShape[3] + colIn];';
return `return w[row * i32(${wShapeStr}[3]) + colIn];`;
case 4:
return 'return w[row * wShape[3] / 4 + colIn];';
return `return w[row * i32(${wShapeStr}[3]) / 4 + colIn];`;
default:
throw new Error(`innerElementSize ${innerElementSize} is not supported.`);
}
Expand All @@ -79,13 +79,13 @@ const conv2dCommonSnippet =
col % outWidth);
`;

const xHeight = isChannelsLast ? 'xShape[1]' : 'xShape[2]';
const xWidth = isChannelsLast ? 'xShape[2]' : 'xShape[3]';
const xHeight = isChannelsLast ? `i32(${xShapeStr}[1])` : `i32(${xShapeStr}[2])`;
const xWidth = isChannelsLast ? `i32(${xShapeStr}[2])` : `i32(${xShapeStr}[3])`;
const row = isChannelsLast ? 'row' : 'col';
const col = isChannelsLast ? 'col' : 'row';
const readXSnippet = `
let inChannels = wShape[2];
let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'};
let inChannels = i32(${wShapeStr}[2]);
let outWidth = ${isChannelsLast ? `i32(${outputShapeStr}[2])` : `i32(${outputShapeStr}[3])`};
let outRow = ${row} / outWidth;
let outCol = ${row} % outWidth;
Expand All @@ -99,7 +99,7 @@ const conv2dCommonSnippet =
// the 'same' padding type.
if (xRow >= 0 && xRow < ${xHeight} && xCol >= 0 && xCol < ${xWidth}) {
${coordASnippet}
let xIndex = getIndexFromCoords4D(coord, xShape);
let xIndex = getIndexFromCoords4D(coord, vec4<i32>(${xShapeStr}));
${getXSnippet(innerElementSizeX)}
}
return resData;`;
Expand All @@ -109,7 +109,7 @@ const conv2dCommonSnippet =
${readXSnippet}` :
`
let col = colIn * ${innerElementSizeX};
if (row < dimAOuter && col < dimInner) {
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${readXSnippet}
}
return ${typeSnippet(innerElementSizeX, dataType)}(0.0);`) :
Expand All @@ -118,7 +118,7 @@ const conv2dCommonSnippet =
${readXSnippet}` :
`
let col = colIn * ${innerElementSizeX};
if (row < dimInner && col < dimBOuter) {
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${readXSnippet}
}
return ${typeSnippet(innerElementSizeX, dataType)}(0.0);`);
Expand All @@ -143,10 +143,10 @@ const conv2dCommonSnippet =
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${resType}) {
let col = colIn * ${innerElementSize};
if (row < dimAOuter && col < dimBOuter)
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var value = valueIn;
let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'};
let outWidth = ${isChannelsLast ? `i32(${outputShapeStr}[2])` : `i32(${outputShapeStr}[3])`};
${coordResSnippet}
${biasSnippet(addBias)}
${applyActivation}
Expand Down Expand Up @@ -194,10 +194,29 @@ export const createConv2DMatMulProgramInfo =
const elementsSize = isVec4 ? [innerElementSize, 4, 4] : [1, 1, 1];
const t = tensorTypeToWsglStorageType(inputs[0].dataType);

const declareInputs = [
`@group(0) @binding(0) var<storage, read> x: array<${isVec4 && innerElementSize === 4 ? `vec4<${t}>` : t}>;`,
`@group(0) @binding(1) var<storage, read> w: array<${isVec4 ? `vec4<${t}>` : t}>;`
];
const components = isVec4 ? 4 : 1;
const enableXShapesUniforms = enableShapesUniforms(inputs[0].dims.length);
const xShapeOrRank = enableXShapesUniforms ? inputs[0].dims.length : inputs[0].dims;

const enableWShapesUniforms = enableShapesUniforms(inputs[1].dims.length);
const wShapeOrRank = enableWShapesUniforms ? inputs[1].dims.length : inputs[1].dims;

const enableOutputShapesUniforms = enableShapesUniforms(outputShape.length);
const outputShapeOrRank = enableOutputShapesUniforms ? outputShape.length : outputShape;

const programUniforms: ProgramUniform[] =
[{type: 'int32', data: dimAOuter}, {type: 'int32', data: dimBOuter}, {type: 'int32', data: dimInner}];
const x = inputVariable('x', inputs[0].dataType, xShapeOrRank, components);
const w = inputVariable('w', inputs[1].dataType, wShapeOrRank, components);
const inputVariables = [x, w];

if (enableXShapesUniforms) {
programUniforms.push(...createTensorShapeVariables(inputs[0].dims));
}
if (enableWShapesUniforms) {
programUniforms.push(...createTensorShapeVariables(inputs[1].dims));
}

let declareFunctions = `
fn setOutputAtIndex(flatIndex : i32, value : ${isVec4 ? `vec4<${t}>` : t}) {
result[flatIndex] = ${isVec4 ? `vec4<${t}>` : t}(value);
Expand All @@ -207,46 +226,52 @@ export const createConv2DMatMulProgramInfo =
setOutputAtIndex(flatIndex ${isVec4 ? '/ 4' : ''}, value);
}`;
if (hasBias) {
declareInputs.push(`@group(0) @binding(2) var<storage, read> bias: array<${isVec4 ? `vec4<${t}>` : t}>;`);
const enableBiasShapesUniforms = enableShapesUniforms(inputs[2].dims.length);
const biasShapeOrRank = enableBiasShapesUniforms ? inputs[2].dims.length : inputs[2].dims;
const bias = inputVariable('bias', inputs[2].dataType, biasShapeOrRank, components);
inputVariables.push(bias);
if (enableBiasShapesUniforms) {
programUniforms.push(...createTensorShapeVariables(inputs[2].dims));
}
declareFunctions += `
fn getBiasByOutputCoords(coords : vec4<i32>) -> ${isVec4 ? `vec4<${t}>` : t} {
return bias[coords.${isChannelsLast ? 'w' : 'y'}${isVec4 ? '/ 4' : ''}];
}`;
}

const xShapeStr = enableXShapesUniforms ? 'uniforms.x_shape' : 'x_shape';
const wShapeStr = enableWShapesUniforms ? 'uniforms.w_shape' : 'w_shape';
const outputShapeStr = enableOutputShapesUniforms ? 'uniforms.result_shape' : 'result_shape';
const output = outputVariable('result', inputs[0].dataType, outputShapeOrRank, components);
if (enableOutputShapesUniforms) {
programUniforms.push(...createTensorShapeVariables(outputShape));
}
return {
name: 'Conv2DMatMul',
shaderCache: {hint: attributes.cacheKey},
getRunData: () => ({
outputs: [{dims: outputShape, dataType: inputs[0].dataType}],
dispatchGroup: {x: dispatch[0], y: dispatch[1], z: dispatch[2]},
programUniforms,
}),
getShaderSource: () => `
${utilFunctions}
getShaderSource: (shaderHelper: ShaderHelper) => `
${utilFunctions(enableOutputShapesUniforms ? 'uniforms.result_strides' : 'result_strides')}
//struct Uniforms { xShape : vec4<i32>, wShape : vec4<i32>, outShape : vec4<i32>,
// outShapeStrides: vec3<i32>, filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>,
// dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32 };
${declareInputs.join('')}
@group(0) @binding(${declareInputs.length}) var<storage, read_write> result: array<${
isVec4 ? `vec4<${t}>` : t}>;
//@group(0) @binding(${declareInputs.length + 1}) var<uniform> uniforms: Uniforms;
const xShape : vec4<i32> = vec4<i32>(${inputs[0].dims.join(',')});
const wShape : vec4<i32> = vec4<i32>(${inputs[1].dims.join(',')});
const outShape : vec4<i32> = vec4<i32>(${outputShape.join(',')});
const outShapeStrides : vec3<i32> = vec3<i32>(${ShapeUtil.computeStrides(outputShape).slice(0, 3).join(',')});
${
shaderHelper.registerUniform('dimAOuter', 'i32')
.registerUniform('dimBOuter', 'i32')
.registerUniform('dimInner', 'i32')
.declareVariables(...inputVariables, output)}
const filterDims : vec2<i32> = vec2<i32>(${attributes.kernelShape[0]}, ${attributes.kernelShape[1]});
const pad : vec2<i32> = vec2<i32>(${attributes.pads[0]}, ${attributes.pads[1]});
const stride : vec2<i32> = vec2<i32>(${attributes.strides[0]}, ${attributes.strides[1]});
const dilation : vec2<i32> = vec2<i32>(${attributes.dilations[0]}, ${attributes.dilations[1]});
const dimAOuter : i32 = ${dimAOuter};
const dimBOuter : i32 = ${dimBOuter};
const dimInner : i32 = ${dimInner};
${declareFunctions}
${
conv2dCommonSnippet(
isChannelsLast, fitAOuter, fitBOuter, fitInner, hasBias, attributes, elementsSize[0], elementsSize[1],
elementsSize[2], t)}
xShapeStr, wShapeStr, outputShapeStr, isChannelsLast, fitAOuter, fitBOuter, fitInner, hasBias,
attributes, elementsSize[0], elementsSize[1], elementsSize[2], t)}
${
isVec4 ?
makeMatMulPackedVec4Source(elementsPerThread, workGroupSize, t, undefined, !isChannelsLast, tileInner) :
Expand Down
Loading

0 comments on commit fb16964

Please sign in to comment.