Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/main' into edgchen1/arm64_q4gemm
Browse files Browse the repository at this point in the history
  • Loading branch information
edgchen1 committed Oct 26, 2023
2 parents d7bd709 + b023de0 commit e39dafb
Show file tree
Hide file tree
Showing 223 changed files with 17,248 additions and 1,962 deletions.
2 changes: 2 additions & 0 deletions .lintrunner.toml
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ exclude_patterns = [
'cmake/external/**',
# ignore generated flatbuffers code
'onnxruntime/core/flatbuffers/ort_flatbuffers_py/**',
'orttraining/orttraining/python/training/optim/_ds_code_store.py',
]
command = [
'python',
Expand Down Expand Up @@ -76,6 +77,7 @@ exclude_patterns = [
'cmake/**',
'orttraining/*',
'onnxruntime/core/flatbuffers/**',
'orttraining/orttraining/python/training/optim/_ds_code_store.py',
]
command = [
'python',
Expand Down
32 changes: 31 additions & 1 deletion cgmanifests/generated/cgmanifest.json
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,36 @@
"$schema": "https://json.schemastore.org/component-detection-manifest.json",
"Version": 1,
"Registrations": [
{
"component": {
"type": "git",
"git": {
"commitHash": "a896e3d066448b3530dbcaa48869fafefd738f57",
"repositoryUrl": "https://github.com/emscripten-core/emsdk.git"
},
"comments": "git submodule at cmake/external/emsdk"
}
},
{
"component": {
"type": "git",
"git": {
"commitHash": "7a2ed51a6b682a83e345ff49fc4cfd7ca47550db",
"repositoryUrl": "https://github.com/google/libprotobuf-mutator.git"
},
"comments": "git submodule at cmake/external/libprotobuf-mutator"
}
},
{
"component": {
"type": "git",
"git": {
"commitHash": "0c296085f9f65f0f8ef7aec7b9eed55faf37dc40",
"repositoryUrl": "https://github.com/onnx/onnx.git"
},
"comments": "git submodule at cmake/external/onnx"
}
},
{
"component": {
"type": "git",
Expand Down Expand Up @@ -166,7 +196,7 @@
"component": {
"type": "git",
"git": {
"commitHash": "fdefbe85ed9c362b95b9b401cd19db068a76141f",
"commitHash": "6a20ba82b439ea1fd650da4d389e96b60a1dd828",
"repositoryUrl": "https://github.com/onnx/onnx.git"
},
"comments": "onnx"
Expand Down
2 changes: 1 addition & 1 deletion cmake/deps.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ microsoft_gsl;https://github.com/microsoft/GSL/archive/refs/tags/v4.0.0.zip;cf36
microsoft_wil;https://github.com/microsoft/wil/archive/refs/tags/v1.0.230629.1.zip;e4a542a323c070376f7c2d1973d0f7ddbc1d2fa5
mimalloc;https://github.com/microsoft/mimalloc/archive/refs/tags/v2.1.1.zip;d5ee7d34223d0567892db5179849939c8769dc41
mp11;https://github.com/boostorg/mp11/archive/refs/tags/boost-1.82.0.zip;9bc9e01dffb64d9e0773b2e44d2f22c51aace063
onnx;https://github.com/onnx/onnx/archive/14303de049144035dfd94ace5f7a3b44773b1aad.zip;250eab9690392b248d75b56e605fb49eca373442
onnx;https://github.com/onnx/onnx/archive/6a20ba82b439ea1fd650da4d389e96b60a1dd828.zip;179a22ad4cd67109c60031ae4b6cf2f434d8bd7e
#use the commit of supporting all the plugins and TRT 8.6-GA (https://github.com/onnx/onnx-tensorrt/commit/0462dc31ae78f48744b6141ae376df1f96d3f459)
onnx_tensorrt;https://github.com/onnx/onnx-tensorrt/archive/0462dc31ae78f48744b6141ae376df1f96d3f459.zip;5ff086361956cceb81ed17453a1fd8db2aa4328d
protobuf;https://github.com/protocolbuffers/protobuf/archive/refs/tags/v21.12.zip;7cf2733949036c7d52fda017badcab093fe73bfa
Expand Down
2 changes: 1 addition & 1 deletion cmake/external/onnx
Submodule onnx updated 960 files
6 changes: 6 additions & 0 deletions cmake/onnxruntime_mlas.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -344,12 +344,18 @@ else()
set(mlas_platform_srcs
${mlas_platform_srcs}
${MLAS_SRC_DIR}/aarch64/HalfGemmKernelNeon.S
${MLAS_SRC_DIR}/aarch64/QgemmS8S8KernelSmmla.S
${MLAS_SRC_DIR}/aarch64/QgemmU8X8KernelUmmla.S
${MLAS_SRC_DIR}/activate_fp16.cpp
${MLAS_SRC_DIR}/dwconv.cpp
${MLAS_SRC_DIR}/halfgemm_kernel_neon.cpp
${MLAS_SRC_DIR}/pooling_fp16.cpp
${MLAS_SRC_DIR}/qgemm_kernel_smmla.cpp
${MLAS_SRC_DIR}/qgemm_kernel_ummla.cpp
)
set_source_files_properties(${MLAS_SRC_DIR}/aarch64/HalfGemmKernelNeon.S PROPERTIES COMPILE_FLAGS " -march=armv8.2-a+fp16 ")
set_source_files_properties(${MLAS_SRC_DIR}/aarch64/QgemmS8S8KernelSmmla.S PROPERTIES COMPILE_FLAGS " -march=armv8.2-a+i8mm ")
set_source_files_properties(${MLAS_SRC_DIR}/aarch64/QgemmU8X8KernelUmmla.S PROPERTIES COMPILE_FLAGS " -march=armv8.2-a+i8mm ")
set_source_files_properties(${MLAS_SRC_DIR}/activate_fp16.cpp PROPERTIES COMPILE_FLAGS " -march=armv8.2-a+fp16 ")
set_source_files_properties(${MLAS_SRC_DIR}/dwconv.cpp PROPERTIES COMPILE_FLAGS " -march=armv8.2-a+fp16 ")
set_source_files_properties(${MLAS_SRC_DIR}/pooling_fp16.cpp PROPERTIES COMPILE_FLAGS " -march=armv8.2-a+fp16 ")
Expand Down
5 changes: 5 additions & 0 deletions cmake/onnxruntime_rocm_hipify.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,11 @@ set(contrib_ops_excluded_files
"quantization/attention_quantization_impl.cuh"
"quantization/dequantize_blockwise.cuh"
"quantization/dequantize_blockwise.cu"
"quantization/dequantize_blockwise_bnb4.cuh"
"quantization/dequantize_blockwise_bnb4.cu"
"quantization/matmul_bnb4.cc"
"quantization/matmul_bnb4.cuh"
"quantization/matmul_bnb4.cu"
"quantization/matmul_nbits.cc"
"quantization/matmul_nbits.cuh"
"quantization/matmul_nbits.cu"
Expand Down
108 changes: 107 additions & 1 deletion docs/ContribOperators.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ Do not modify directly.*
* <a href="#com.microsoft.Inverse">com.microsoft.Inverse</a>
* <a href="#com.microsoft.Irfft">com.microsoft.Irfft</a>
* <a href="#com.microsoft.LongformerAttention">com.microsoft.LongformerAttention</a>
* <a href="#com.microsoft.MatMulBnb4">com.microsoft.MatMulBnb4</a>
* <a href="#com.microsoft.MatMulFpQ4">com.microsoft.MatMulFpQ4</a>
* <a href="#com.microsoft.MatMulInteger16">com.microsoft.MatMulInteger16</a>
* <a href="#com.microsoft.MatMulIntegerToFloat">com.microsoft.MatMulIntegerToFloat</a>
Expand Down Expand Up @@ -90,6 +91,7 @@ Do not modify directly.*
* <a href="#com.microsoft.RemovePadding">com.microsoft.RemovePadding</a>
* <a href="#com.microsoft.RestorePadding">com.microsoft.RestorePadding</a>
* <a href="#com.microsoft.Rfft">com.microsoft.Rfft</a>
* <a href="#com.microsoft.RotaryEmbedding">com.microsoft.RotaryEmbedding</a>
* <a href="#com.microsoft.SampleOp">com.microsoft.SampleOp</a>
* <a href="#com.microsoft.Sampling">com.microsoft.Sampling</a>
* <a href="#com.microsoft.SkipLayerNormalization">com.microsoft.SkipLayerNormalization</a>
Expand Down Expand Up @@ -2503,6 +2505,62 @@ This version of the operator has been available since version 1 of the 'com.micr
</dl>


### <a name="com.microsoft.MatMulBnb4"></a><a name="com.microsoft.matmulbnb4">**com.microsoft.MatMulBnb4**</a>

MatMulBnb4 is a MatMul with weight quantized with 4 bits using either FP4 or NF4 data type (https://arxiv.org/pdf/2305.14314.pdf). It does Matrix Multiplication like MatMul (https://github.com/onnx/onnx/blob/main/docs/Operators.md#matmul) with differences:
1. Input B is a 2D constant Matrix. Its input feature count and output feature count are specified by attribute 'K' and 'N'.
2. Input B is quantized with 4 bits with quantization data type specified by attribute 'quant_type'. It is transposed, flattened and quantized blockwisely with block size specified by attribute 'block_size'.
And block_size is not an arbitrary number and must be a power of 2 and not smaller than 16, like 16, 32, 64, 128,..
3. Input B's quantization constants or scales are specified by input 'absmax'.

Input B is stored as uint8_t with shape: [(N * K + 1) / 2].
Input absmax is stored in same type as original type of B(float32, float16) with shape like: [(N * K + block_size - 1) / block_size].

#### Version

This version of the operator has been available since version 1 of the 'com.microsoft' operator set.

#### Attributes

<dl>
<dt><tt>K</tt> : int (required)</dt>
<dd>size of each input feature</dd>
<dt><tt>N</tt> : int (required)</dt>
<dd>size of each output feature</dd>
<dt><tt>block_size</tt> : int (required)</dt>
<dd>number of groupsize used for weight quantization. It needs to be a power of 2 and not smaller than 16.</dd>
<dt><tt>quant_type</tt> : int (required)</dt>
<dd>quantization data type. 0 for FP4, 1 for NF4.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>A</tt> : T1</dt>
<dd>The input tensor, not quantized</dd>
<dt><tt>B</tt> : T2</dt>
<dd>1-dimensional quantized data for weight</dd>
<dt><tt>absmax</tt> : T1</dt>
<dd>quantization constants</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T1</dt>
<dd>tensor. The output tensor has the same rank as the input. </dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : tensor(float), tensor(float16)</dt>
<dd>Constrain input and output types to float/half_float tensors.</dd>
<dt><tt>T2</tt> : tensor(uint8)</dt>
<dd>Constrain quantized weight types to uint8.</dd>
</dl>


### <a name="com.microsoft.MatMulFpQ4"></a><a name="com.microsoft.matmulfpq4">**com.microsoft.MatMulFpQ4**</a>

Matrix product with right hand matrix being pre-packed and quantized int4 data blob.
Expand Down Expand Up @@ -2834,7 +2892,7 @@ This version of the operator has been available since version 1 of the 'com.micr
<dt><tt>bias</tt> (optional) : T</dt>
<dd>Bias tensor with shape (hidden_size + hidden_size + v_hidden_size) from input projection</dd>
<dt><tt>key_padding_mask</tt> (optional) : M</dt>
<dd>Key padding mask with shape (batch_size) or (3 * batch_size + 2) or (batch_size, kv_sequence_length)</dd>
<dd>Key padding mask with shape (batch_size), (3 * batch_size + 2), (batch_size, kv_sequence_length), (batch_size, total_sequence_length), or (batch_size, sequence_length, total_sequence_length)</dd>
<dt><tt>relative_position_bias</tt> (optional) : T</dt>
<dd>relative position bias: addition to QxK' with shape (batch_size, num_heads, sequence_length, total_sequence_length) or (1, num_heads, sequence_length, total_sequence_length)</dd>
<dt><tt>past_key</tt> (optional) : T</dt>
Expand Down Expand Up @@ -4796,6 +4854,54 @@ This version of the operator has been available since version 1 of the 'com.micr
</dl>


### <a name="com.microsoft.RotaryEmbedding"></a><a name="com.microsoft.rotaryembedding">**com.microsoft.RotaryEmbedding**</a>

RotaryEmbedding is the implementation of rotary positional embeddings (RoPE). The positions are represented as rotation matrices
that are multiplied to query and key before the inner product of query and key is taken.

#### Version

This version of the operator has been available since version 1 of the 'com.microsoft' operator set.

#### Attributes

<dl>
<dt><tt>interleaved</tt> : int</dt>
<dd>Rotate using interleaved pattern. Default value is 0 (False).</dd>
<dt><tt>scale</tt> : float</dt>
<dd>Custom scale will be used if specified. Default value is 1.0</dd>
</dl>

#### Inputs

<dl>
<dt><tt>input</tt> : T</dt>
<dd>3D tensor with shape (batch_size, sequence_length, hidden_size)</dd>
<dt><tt>position_ids</tt> : M</dt>
<dd>1D tensor with shape (1) or 2D tensor with shape (batch_size, sequence_length)</dd>
<dt><tt>cos_cache</tt> : T</dt>
<dd>2D tensor with shape (max_sequence_length, head_size / 2).</dd>
<dt><tt>sin_cache</tt> : T</dt>
<dd>2D tensor with shape (max_sequence_length, head_size / 2).</dd>
</dl>

#### Outputs

<dl>
<dt><tt>output</tt> : T</dt>
<dd>3D tensor with shape (batch_size, sequence_length, hidden_size)</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(float16)</dt>
<dd>Constrain input and output types to float tensors.</dd>
<dt><tt>M</tt> : tensor(int64)</dt>
<dd>Constrain input and output types to integer tensors</dd>
</dl>


### <a name="com.microsoft.SampleOp"></a><a name="com.microsoft.sampleop">**com.microsoft.SampleOp**</a>

Sample echo operator.
Expand Down
12 changes: 10 additions & 2 deletions docs/OperatorKernels.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ Do not modify directly.*
|||13|**T** = tensor(double), tensor(float), tensor(int32), tensor(int64)|
|||[7, 12]|**T** = tensor(double), tensor(float), tensor(int32), tensor(int64)|
|Affine|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(float)|
|AffineGrid|*in* theta:**T1**<br> *in* size:**T2**<br> *out* grid:**T1**|20+|**T1** = tensor(double), tensor(float)<br/> **T2** = tensor(int64)|
|And|*in* A:**T**<br> *in* B:**T**<br> *out* C:**T1**|7+|**T** = tensor(bool)<br/> **T1** = tensor(bool)|
|ArgMax|*in* data:**T**<br> *out* reduced:**tensor(int64)**|13+|**T** = tensor(double), tensor(float), tensor(int32), tensor(int8), tensor(uint8)|
|||[11, 12]|**T** = tensor(double), tensor(float), tensor(int32), tensor(int8), tensor(uint8)|
Expand Down Expand Up @@ -156,8 +157,10 @@ Do not modify directly.*
|||[1, 10]|**B** = tensor(bool)<br/> **V** = tensor(bfloat16), tensor(bool), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8)|
|ImageScaler|*in* input:**T**<br> *out* output:**T**|1+|**T** = tensor(float)|
|InstanceNormalization|*in* input:**T**<br> *in* scale:**T**<br> *in* B:**T**<br> *out* output:**T**|6+|**T** = tensor(float)|
|IsInf|*in* X:**T1**<br> *out* Y:**T2**|10+|**T1** = tensor(double), tensor(float)<br/> **T2** = tensor(bool)|
|IsNaN|*in* X:**T1**<br> *out* Y:**T2**|13+|**T1** = tensor(double), tensor(float), tensor(float16)<br/> **T2** = tensor(bool)|
|IsInf|*in* X:**T1**<br> *out* Y:**T2**|20+|**T1** = tensor(double), tensor(float), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)<br/> **T2** = tensor(bool)|
|||[10, 19]|**T1** = tensor(double), tensor(float)<br/> **T2** = tensor(bool)|
|IsNaN|*in* X:**T1**<br> *out* Y:**T2**|20+|**T1** = tensor(double), tensor(float), tensor(float16), tensor(float8e4m3fn), tensor(float8e4m3fnuz), tensor(float8e5m2), tensor(float8e5m2fnuz)<br/> **T2** = tensor(bool)|
|||[13, 19]|**T1** = tensor(double), tensor(float), tensor(float16)<br/> **T2** = tensor(bool)|
|||[9, 12]|**T1** = tensor(double), tensor(float), tensor(float16)<br/> **T2** = tensor(bool)|
|LRN|*in* X:**T**<br> *out* Y:**T**|13+|**T** = tensor(float)|
|||[1, 12]|**T** = tensor(float)|
Expand Down Expand Up @@ -454,6 +457,7 @@ Do not modify directly.*
|GreedySearch|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**I**<br> *in* prefix_vocab_mask:**I**<br> *in* attention_mask:**I**<br> *out* sequences:**I**|1+|**T** = tensor(float)|
|GridSample|*in* X:**T1**<br> *in* Grid:**T1**<br> *out* Y:**T2**|1+|**T1** = tensor(float)<br/> **T2** = tensor(float)|
|Inverse|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|MatMulBnb4|*in* A:**T1**<br> *in* B:**T2**<br> *in* absmax:**T1**<br> *out* Y:**T1**|1+|**T1** = tensor(float)<br/> **T2** = tensor(uint8)|
|MatMulFpQ4|*in* A:**T1**<br> *in* B:**T2**<br> *in* B_shape:**T3**<br> *out* Y:**T1**|1+|**T1** = tensor(float)<br/> **T2** = tensor(uint8)<br/> **T3** = tensor(int64)|
|MatMulInteger16|*in* A:**T1**<br> *in* B:**T2**<br> *out* Y:**T3**|1+|**T1** = tensor(int16)<br/> **T2** = tensor(int16)<br/> **T3** = tensor(int32)|
|MatMulIntegerToFloat|*in* A:**T1**<br> *in* B:**T2**<br> *in* a_scale:**T3**<br> *in* b_scale:**T3**<br> *in* a_zero_point:**T1**<br> *in* b_zero_point:**T2**<br> *in* bias:**T3**<br> *out* Y:**T3**|1+|**T1** = tensor(int8), tensor(uint8)<br/> **T2** = tensor(int8), tensor(uint8)<br/> **T3** = tensor(float)|
Expand All @@ -477,9 +481,11 @@ Do not modify directly.*
|QuantizeLinear|*in* x:**T1**<br> *in* y_scale:**T1**<br> *in* y_zero_point:**T2**<br> *out* y:**T2**|1+|**T1** = tensor(float)<br/> **T2** = tensor(int16), tensor(int8), tensor(uint16), tensor(uint8)|
|QuickGelu|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(float)|
|Range|*in* start:**T**<br> *in* limit:**T**<br> *in* delta:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(int16), tensor(int32), tensor(int64)|
|RotaryEmbedding|*in* input:**T**<br> *in* position_ids:**M**<br> *in* cos_cache:**T**<br> *in* sin_cache:**T**<br> *out* output:**T**|1+|**M** = tensor(int64)<br/> **T** = tensor(float)|
|SampleOp|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(float)|
|Sampling|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**I**<br> *in* prefix_vocab_mask:**I**<br> *in* attention_mask:**I**<br> *in* presence_mask:**I**<br> *in* seed:**I**<br> *out* sequences:**I**<br> *out* filtered_logits:**T**|1+|**T** = tensor(float)|
|SkipLayerNormalization|*in* input:**T**<br> *in* skip:**T**<br> *in* gamma:**T**<br> *in* beta:**T**<br> *in* bias:**T**<br> *out* output:**T**<br> *out* mean:**U**<br> *out* inv_std_var:**U**<br> *out* input_skip_bias_sum:**T**|1+|**T** = tensor(double), tensor(float)|
|SkipSimplifiedLayerNormalization|*in* input:**T**<br> *in* skip:**T**<br> *in* gamma:**T**<br> *in* bias:**T**<br> *out* output:**T**<br> *out* mean:**U**<br> *out* inv_std_var:**U**<br> *out* input_skip_bias_sum:**T**|1+|**T** = tensor(double), tensor(float)|
|SparseToDenseMatMul|*in* A:**T**<br> *in* B:**T1**<br> *out* Y:**T1**|1+|**T** = sparse_tensor(double), sparse_tensor(float), sparse_tensor(int32), sparse_tensor(int64), sparse_tensor(uint32), sparse_tensor(uint64)<br/> **T1** = tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(uint32), tensor(uint64)|
|Tokenizer|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(string)|
|TransposeMatMul|*in* A:**T**<br> *in* B:**T**<br> *out* Y:**T**|1+|**T** = tensor(float)|
Expand Down Expand Up @@ -847,6 +853,7 @@ Do not modify directly.*
|Inverse|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|Irfft|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|LongformerAttention|*in* input:**T**<br> *in* weight:**T**<br> *in* bias:**T**<br> *in* mask:**T**<br> *in* global_weight:**T**<br> *in* global_bias:**T**<br> *in* global:**G**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|MatMulBnb4|*in* A:**T1**<br> *in* B:**T2**<br> *in* absmax:**T1**<br> *out* Y:**T1**|1+|**T1** = tensor(float), tensor(float16)<br/> **T2** = tensor(uint8)|
|MatMulNBits|*in* A:**T1**<br> *in* B:**T2**<br> *in* scales:**T1**<br> *in* zero_points:**T2**<br> *out* Y:**T1**|1+|**T1** = tensor(float), tensor(float16)<br/> **T2** = tensor(uint8)|
|MultiHeadAttention|*in* query:**T**<br> *in* key:**T**<br> *in* value:**T**<br> *in* bias:**T**<br> *in* key_padding_mask:**M**<br> *in* relative_position_bias:**T**<br> *in* past_key:**T**<br> *in* past_value:**T**<br> *out* output:**T**<br> *out* present_key:**T**<br> *out* present_value:**T**|1+|**T** = tensor(float), tensor(float16)|
|NGramRepeatBlock|*in* input_ids:**Tid**<br> *in* scores:**T**<br> *out* scores_out:**T**|1+|**T** = tensor(float)<br/> **Tid** = tensor(int64)|
Expand All @@ -866,6 +873,7 @@ Do not modify directly.*
|RemovePadding|*in* input:**T**<br> *in* sequence_token_count:**M**<br> *out* output:**T**<br> *out* token_offset:**M**<br> *out* cumulated_seq_len:**M**<br> *out* max_seq_len:**M**|1+|**T** = tensor(float), tensor(float16)|
|RestorePadding|*in* input:**T**<br> *in* token_offset:**M**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|Rfft|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|RotaryEmbedding|*in* input:**T**<br> *in* position_ids:**M**<br> *in* cos_cache:**T**<br> *in* sin_cache:**T**<br> *out* output:**T**|1+|**M** = tensor(int64)<br/> **T** = tensor(float), tensor(float16)|
|Sampling|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**I**<br> *in* prefix_vocab_mask:**I**<br> *in* attention_mask:**I**<br> *in* presence_mask:**I**<br> *in* seed:**I**<br> *out* sequences:**I**<br> *out* filtered_logits:**T**|1+|**T** = tensor(float), tensor(float16)|
|SkipLayerNormalization|*in* input:**T**<br> *in* skip:**T**<br> *in* gamma:**T**<br> *in* beta:**T**<br> *in* bias:**T**<br> *out* output:**T**<br> *out* mean:**U**<br> *out* inv_std_var:**U**<br> *out* input_skip_bias_sum:**T**|1+|**T** = tensor(float), tensor(float16)|
|SkipSimplifiedLayerNormalization|*in* input:**T**<br> *in* skip:**T**<br> *in* gamma:**T**<br> *in* bias:**T**<br> *out* output:**T**<br> *out* mean:**U**<br> *out* inv_std_var:**U**<br> *out* input_skip_bias_sum:**T**|1+|**T** = tensor(float), tensor(float16)|
Expand Down
Loading

0 comments on commit e39dafb

Please sign in to comment.