Skip to content

Commit

Permalink
Optimize matmulnbits with M > 1
Browse files Browse the repository at this point in the history
  • Loading branch information
qjia7 committed Dec 12, 2024
1 parent 1f88284 commit d38be76
Showing 1 changed file with 185 additions and 1 deletion.
186 changes: 185 additions & 1 deletion js/web/lib/wasm/jsep/webgpu/ops/matmulnbits.ts
Original file line number Diff line number Diff line change
Expand Up @@ -434,9 +434,193 @@ export const createMatMulNBitsBlockSize32ProgramInfo = (
};
};

// Currently, only support blockSize = 32.
export const createMatMulNBitsWithLargeMProgramInfo = (
inputs: readonly TensorView[],
attributes: MatMulNBitsAttributes,
): ProgramInfo => {
const inputShape = inputs[0].dims;
const aRank = inputShape.length;
const dimAOuter = inputShape[aRank - 2];
const dimInner = attributes.k;
const dimBOuter = attributes.n;
const batchDims = inputShape.slice(0, aRank - 2);
const batchSize = ShapeUtil.size(batchDims);
const blobSize = inputs[1].dims[2];
const blobSizeInWords = blobSize / 4;
const dataType = inputs[0].dataType;
const aComponents = getMaxComponents(attributes.k);
const bComponents = getMaxComponents(blobSizeInWords);
const outputShape = batchDims.concat([dimAOuter, dimBOuter]);

const workgroupSize = 64;
const tileM = 4;
const workgroupY = 8;
const workgroupX = workgroupSize / workgroupY;
const tileSize = workgroupX * bComponents * 8; // each uint32 has 8 data.
const aLengthPerTile = tileSize / aComponents;
const blocksPerTile = tileSize / attributes.blockSize;

const programUniforms: ProgramUniform[] = [];
const inputShapeTemp = [batchSize, dimAOuter, dimInner / aComponents];
const bShape = ShapeUtil.convertShape(inputs[1].dims).slice();
bShape.splice(-1, 1, blobSizeInWords / bComponents);
programUniforms.push(...createTensorShapeVariables(inputShapeTemp));
programUniforms.push(...createTensorShapeVariables(bShape));
programUniforms.push(...createTensorShapeVariables(inputs[2].dims));
if (inputs.length === 4) {
programUniforms.push(...createTensorShapeVariables(ShapeUtil.convertShape(inputs[3].dims)));
}
const outputShapeTemp = [batchSize, dimAOuter, dimBOuter];
programUniforms.push(...createTensorShapeVariables(outputShapeTemp));

const getShaderSource = (shaderHelper: ShaderHelper) => {
const inputRank = inputShapeTemp.length;
const a = inputVariable('a', inputs[0].dataType, inputRank, aComponents);
const b = inputVariable('b', DataType.uint32, bShape.length, bComponents);
const scales = inputVariable('scales', inputs[2].dataType, inputs[2].dims.length);
const inputVariables = [a, b, scales];
const zeroPoints =
inputs.length === 4 ? inputVariable('zero_points', DataType.uint32, inputs[3].dims.length) : undefined;
if (zeroPoints) {
inputVariables.push(zeroPoints);
}
const outputRank = outputShapeTemp.length;
const output = outputVariable('output', inputs[0].dataType, outputRank);
const dataType = tensorTypeToWsglStorageType(inputs[0].dataType);
const readA = () => {
switch (aComponents) {
case 1:
return `
let a_data0 = vec4<${dataType}>(sub_a[r][word_offset], sub_a[r][word_offset + 1], sub_a[r][word_offset + 2], sub_a[r][word_offset + 3]);
let a_data1 = vec4<${dataType}>(sub_a[r][word_offset + 4], sub_a[r][word_offset + 5], sub_a[r][word_offset + 6], sub_a[r][word_offset + 7]);`;
case 2:
return `
let a_data0 = vec4<${dataType}>(sub_a[r][word_offset], sub_a[r][word_offset + 1]);
let a_data1 = vec4<${dataType}>(sub_a[r][word_offset + 2], sub_a[r][word_offset + 3]);`;
case 4:
return `
let a_data0 = sub_a[r][word_offset];
let a_data1 = sub_a[r][word_offset + 1];`;
default:
throw new Error(`${aComponents}-component is not supported.`);
}
};

const loadTileA = () => {
let str = '';
for (let i = 0; i < tileM; i++) {
str += `sub_a[${i}][a_offset] = mm_readA(batch, row + ${i}, a_col);`;
}
return str;
};
return `
fn mm_readA(batch: u32, row : u32, col : u32) -> ${a.type.value} {
if (row < uniforms.a_shape[1] && col < uniforms.a_shape[2])
{
return ${a.getByIndices(`${a.type.indices}(batch, row, col)`)};
} else {
return ${a.type.value}(0);
}
}
var<workgroup> sub_a: array<array<${a.type.value}, ${aLengthPerTile}>, ${tileM}>;
var<workgroup> inter_results: array<array<array<${output.type.value}, ${workgroupX}>, ${workgroupY}>, ${tileM}>;
${shaderHelper.declareVariables(...inputVariables, output)}
${shaderHelper.mainStart([workgroupX, workgroupY, 1])}
let col = workgroup_id.x * ${workgroupY};
let row = workgroup_id.y * ${tileM};
let batch = workgroup_id.z;
let n_blocks_per_col = uniforms.b_shape[1];
let num_tiles = (n_blocks_per_col - 1) / ${blocksPerTile} + 1;
// Loop over shared dimension.
for (var tile: u32 = 0; tile < num_tiles; tile += 1) {
let a_col_start = tile * ${aLengthPerTile};
// load one tile A data into shared memory.
for (var a_offset = local_idx; a_offset < ${aLengthPerTile}; a_offset += ${workgroupSize})
{
let a_col = a_col_start + a_offset;
${loadTileA()}
}
workgroupBarrier();
// each thread process one block
let b_col = col + local_id.y;
let block = tile * ${blocksPerTile} + local_id.x;
${
zeroPoints
? `
let zero_point_bytes_per_col = (n_blocks_per_col + 1) / 2;
let zero_point_byte_count = b_col * zero_point_bytes_per_col + (block >> 0x1u);
let zero_point_word_index = zero_point_byte_count >> 0x2u;
let zero_point_byte_offset = zero_point_byte_count & 0x3u;
let zero_point_nibble_offset: u32 = block & 0x1u;
let zero_point_bits_offset = (zero_point_byte_offset << 3) + (zero_point_nibble_offset << 2);
let zero_point_word = ${zeroPoints.getByOffset('zero_point_word_index')} >> zero_point_bits_offset;
let zero_point = ${dataType}((zero_point_word) & 0xFu);`
: `
// The default zero point is 8 for unsigned 4-bit quantization.
let zero_point = ${dataType}(${8.0});`
}
let scale = ${scales.getByOffset(`b_col * n_blocks_per_col + block`)};
let b_data = ${b.getByIndices(`${b.type.indices}(b_col, block, 0)`)};
var word_offset = local_id.x * ${attributes.blockSize / aComponents};
for (var i: u32 = 0; i < ${bComponents}; i++) {
let b_value = ${bComponents === 1 ? `b_data` : `b_data[i]`};
let b_value_lower = unpack4xU8(b_value & 0x0F0F0F0Fu);
let b_value_upper = unpack4xU8((b_value >> 4) & 0x0F0F0F0Fu);
let b_quantized_values = mat2x4<${dataType}>(${Array.from(
{ length: 4 },
(_, i) => `${dataType}(b_value_lower[${i}]), ${dataType}(b_value_upper[${i}])`,
).join(', ')});
let b_dequantized_values = (b_quantized_values - mat2x4<${dataType}>(${Array(8).fill('zero_point').join(',')})) * scale;
for (var r = 0; r < ${tileM}; r++) {
${readA()}
inter_results[r][local_id.y][local_id.x] += ${Array.from(
{ length: 2 },
(_, i) => `${`dot(a_data${i}, b_dequantized_values[${i}])`}`,
).join(' + ')};
}
word_offset += ${8 / aComponents};
}
workgroupBarrier();
}
if (local_id.y < ${tileM}) {
var output_value: ${output.type.value} = ${output.type.value}(0);
for (var b = 0u; b < ${workgroupX}; b++) {
output_value += inter_results[local_id.y][local_id.x][b];
}
if (row + local_id.y < uniforms.output_shape[1] && col + local_id.x < uniforms.output_shape[2])
{
${output.setByIndices(`${output.type.indices}(batch, row + local_id.y, col + local_id.x)`, 'output_value')}
}
}
}`;
};
return {
name: 'MatMulNBitsWithLargeM',
shaderCache: {
hint: `${attributes.blockSize};${aComponents};${bComponents};${workgroupX};${workgroupY};${tileM}`,
inputDependencies: Array(inputs.length).fill('rank'),
},
getRunData: () => ({
outputs: [{ dims: outputShape, dataType }],
dispatchGroup: { x: Math.ceil(dimBOuter / workgroupY), y: Math.ceil(dimAOuter / tileM), z: batchSize },
programUniforms,
}),
getShaderSource,
};
};

export const matMulNBits = (context: ComputeContext, attributes: MatMulNBitsAttributes): void => {
validateInputs(context.inputs, attributes);
if (
const inputShape = context.inputs[0].dims;
const m = inputShape[inputShape.length - 2];
if (m > 1 && attributes.blockSize === 32) {
context.compute(createMatMulNBitsWithLargeMProgramInfo(context.inputs, attributes));
} else if (
attributes.blockSize === 32 &&
context.adapterInfo.isVendor('intel') &&
context.adapterInfo.isArchitecture('gen-12lp')
Expand Down

0 comments on commit d38be76

Please sign in to comment.