Skip to content

Commit

Permalink
optimize int4 gemv kernel with cuda
Browse files Browse the repository at this point in the history
  • Loading branch information
yufenglee committed Dec 14, 2023
1 parent e603e78 commit bb2a6df
Show file tree
Hide file tree
Showing 3 changed files with 186 additions and 78 deletions.
247 changes: 172 additions & 75 deletions onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu
Original file line number Diff line number Diff line change
Expand Up @@ -17,33 +17,109 @@ namespace onnxruntime {
namespace contrib {
namespace cuda {

__device__ __forceinline__ float AccumulateEightElements(uint32_t values_quant, half scale, uint8_t zp, const half* a) {
template <typename T>
__device__ __forceinline__ T WarpUniform(T value) {
struct {
union {
T value;
uint32_t asInt;
};
} p;
p.value = value;
p.asInt = __shfl_sync(0xffffffff, (unsigned)p.asInt, 0);
return p.value;
}

// Convert 8 4bits integer stored in one uint32_t to 8 halfs.
// 8 4bits with order 0,1,2,3,4,5,6,7,8 will be converted to 8 halfs with order 0,4,1,5,2,6,3,7
__device__ __forceinline__ void Convert8xInt4To8xHalfs(uint32_t value, half2* half_2x4) {
uint32_t* h = reinterpret_cast<uint32_t*>(half_2x4);

// From https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
// First, we extract the i4s and construct an intermediate fp16 number.
constexpr uint32_t kImmLut = (0xf0 & 0xcc) | 0xaa;
constexpr uint32_t kBottomMask = 0x000f000f;
constexpr uint32_t kTopMask = 0x00f000f0;
constexpr uint32_t kI4sToF16sMagicNum = 0x64006400;

// Note that the entire sequence only requires 1 shift instruction. This is thanks to the register packing
// format and the fact that we force our integers to be unsigned, and account for this in the fp16 subtractions.
// In addition, I exploit the fact that sub and fma have the same throughput in order to convert elt_23 and
// elt_67 to fp16 without having to shift them to the bottom bits before hand.

// Shift right by 8 to now consider elt_45 and elt_67. Issue first to hide RAW dependency if we issue
// immediately before required.
const uint32_t top_i4s = value >> 8;
// Extract elt_01 - (i4s & 0x000f000f) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[0])
: "r"(value), "n"(kBottomMask), "n"(kI4sToF16sMagicNum), "n"(kImmLut));
// Extract elt_23 (i4s & 0x00f000f0) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[1])
: "r"(value), "n"(kTopMask), "n"(kI4sToF16sMagicNum), "n"(kImmLut));
// Extract elt_45 (top_i4s & 0x000f000f) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[2])
: "r"(top_i4s), "n"(kBottomMask), "n"(kI4sToF16sMagicNum), "n"(kImmLut));
// Extract elt_67 (top_i4s & 0x00f000f0) | 0x64006400
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(h[3])
: "r"(top_i4s), "n"(kTopMask), "n"(kI4sToF16sMagicNum), "n"(kImmLut));

// I use inline PTX below because I am not sure if the compiler will emit float2half instructions if I use the
// half2 ctor. In this case, I chose performance reliability over code readability.

// This is the half2 {1024, 1024} represented as an integer.
constexpr uint32_t kFp16TopMagicNum = 0x64006400;
// This is the half2 {1 / 16, 1 / 16} represented as an integer.
constexpr uint32_t kOneSixteenth = 0x2c002c00;
// This is the half2 {-64, -64} represented as an integer.
constexpr uint32_t kNeg64 = 0xd400d400;

// Finally, we construct the output numbers.
// Convert elt_01
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[0]) : "r"(h[0]), "r"(kFp16TopMagicNum));
// Convert elt_23
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[1]) : "r"(h[1]), "r"(kOneSixteenth), "r"(kNeg64));
// Convert elt_45
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[2]) : "r"(h[2]), "r"(kFp16TopMagicNum));
// Convert elt_67
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[3]) : "r"(h[3]), "r"(kOneSixteenth), "r"(kNeg64));
}

__device__ __forceinline__ float AccumulateEightElements(uint32_t values_quant, half scale, uint8_t zp, const half* a, half* sums) {

Check warning on line 91 in onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu

View workflow job for this annotation

GitHub Actions / cpplint

[cpplint] onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu#L91

Lines should be <= 120 characters long [whitespace/line_length] [2]
Raw output
onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu:91:  Lines should be <= 120 characters long  [whitespace/line_length] [2]
half2 scale_half2 = {scale, scale};
half zp_adjust = -scale * __short2half_rn(zp);
half2 zp_adjust2 = {zp_adjust, zp_adjust};
uint4 vec_a = *(reinterpret_cast<const uint4*>(a));

half2 element01 = __halves2half2(__uint2half_rn(values_quant & 0xF), __uint2half_rn((values_quant >> 4) & 0xF));
half2 v0 = element01 * scale_half2 + zp_adjust2;
constexpr uint32_t kLowHalf2 = 0x5410;
constexpr uint32_t kHighHalf2 = 0x7632;

uint4 vec_permuted;
asm volatile("prmt.b32 %0, %1, %2, %3;\n" : "=r"(vec_permuted.x) : "r"(vec_a.x), "r"(vec_a.z), "r"(kLowHalf2));
asm volatile("prmt.b32 %0, %1, %2, %3;\n" : "=r"(vec_permuted.y) : "r"(vec_a.x), "r"(vec_a.z), "r"(kHighHalf2));
asm volatile("prmt.b32 %0, %1, %2, %3;\n" : "=r"(vec_permuted.z) : "r"(vec_a.y), "r"(vec_a.w), "r"(kLowHalf2));
asm volatile("prmt.b32 %0, %1, %2, %3;\n" : "=r"(vec_permuted.w) : "r"(vec_a.y), "r"(vec_a.w), "r"(kHighHalf2));

half2 element23 = __halves2half2(__uint2half_rn((values_quant >> 8) & 0xF), __uint2half_rn((values_quant >> 12) & 0xF));
half2 v1 = element23 * scale_half2 + zp_adjust2;
half2 elements[4]; // [04, 15, 26, 37]

half2 element45 = __halves2half2(__uint2half_rn((values_quant >> 16) & 0xF), __uint2half_rn((values_quant >> 20) & 0xF));
half2 v2 = element45 * scale_half2 + zp_adjust2;
Convert8xInt4To8xHalfs(values_quant, elements);

half2 element67 = __halves2half2(__uint2half_rn((values_quant >> 24) & 0xF), __uint2half_rn((values_quant >> 28) & 0xF));
half2 v3 = element67 * scale_half2 + zp_adjust2;
half2 v0 = elements[0] * scale_half2 + zp_adjust2;
half2 v1 = elements[1] * scale_half2 + zp_adjust2;
half2 v2 = elements[2] * scale_half2 + zp_adjust2;
half2 v3 = elements[3] * scale_half2 + zp_adjust2;

v0 = v0 * (*(reinterpret_cast<half2*>(&(vec_a.x))));
v1 = v1 * (*(reinterpret_cast<half2*>(&(vec_a.y))));
v2 = v2 * (*(reinterpret_cast<half2*>(&(vec_a.z)))) + v0;
v3 = v3 * (*(reinterpret_cast<half2*>(&(vec_a.w)))) + v1;
v3 = v2 + v3;
return float(v3.x) + float(v3.y);
half2* sums_half2 = reinterpret_cast<half2*>(sums);
sums_half2[0] += v0 * (*(reinterpret_cast<half2*>(&(vec_permuted.x))));
sums_half2[1] += v1 * (*(reinterpret_cast<half2*>(&(vec_permuted.y))));
sums_half2[2] += v2 * (*(reinterpret_cast<half2*>(&(vec_permuted.z))));
sums_half2[3] += v3 * (*(reinterpret_cast<half2*>(&(vec_permuted.w))));
}

__device__ __forceinline__ float AccumulateEightElements(uint32_t values_quant, float scale, uint8_t zp, const float* a) {
__device__ __forceinline__ float AccumulateEightElements(uint32_t values_quant, float scale, uint8_t zp, const float* a, float* sums) {

Check warning on line 122 in onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu

View workflow job for this annotation

GitHub Actions / cpplint

[cpplint] onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu#L122

Lines should be <= 120 characters long [whitespace/line_length] [2]
Raw output
onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu:122:  Lines should be <= 120 characters long  [whitespace/line_length] [2]
float4 a_vec_0 = *(reinterpret_cast<const float4*>(a));
float4 a_vec_1 = *(reinterpret_cast<const float4*>(a + 4));

Expand All @@ -57,15 +133,14 @@ __device__ __forceinline__ float AccumulateEightElements(uint32_t values_quant,
float v6 = float((values_quant >> 24) & 0xF) * scale + zp_adjust;
float v7 = float((values_quant >> 28) & 0xF) * scale + zp_adjust;

v0 = v0 * a_vec_0.x;
v1 = v1 * a_vec_0.y;
v2 = v2 * a_vec_0.z;
v3 = v3 * a_vec_0.w;
v4 = v4 * a_vec_1.x + v0;
v5 = v5 * a_vec_1.y + v1;
v6 = v6 * a_vec_1.z + v2;
v7 = v7 * a_vec_1.w + v3;
return v4 + v5 + v6 + v7;
sums[0] += v0 * a_vec_0.x;
sums[1] += v1 * a_vec_0.y;
sums[2] += v2 * a_vec_0.z;
sums[3] += v3 * a_vec_0.w;
sums[4] += v4 * a_vec_1.x;
sums[5] += v5 * a_vec_1.y;
sums[6] += v6 * a_vec_1.z;
sums[7] += v7 * a_vec_1.w;
}

constexpr int kColsPerThreadBlock = 8;
Expand All @@ -76,8 +151,8 @@ constexpr int kWarpSize = 32;
// The thread block size is (kWarpSize, kColsPerThreadBlock) and grid size is (N/kColsPerThreadBlock, 1)
// Each thread block computes [1, K] x [kColsPerThreadBlock, (K + block_size - 1)/block_size, blob],
// i.e., computing kColsPerThreadBlock per block and a warp reduce (1, K) x (K)
template <class T, int block_size>
__global__ void MatMulFloatInt4Kernel(
template <class T, int block_size, bool has_zero_point>
__global__ void __launch_bounds__(kWarpSize* kColsPerThreadBlock) MatMulFloatInt4Kernel(
T* output,
const T* a_data,
const uint8_t* b_data_quant,
Expand All @@ -87,63 +162,78 @@ __global__ void MatMulFloatInt4Kernel(
int n,
int k,
int blocks_per_K) {
int n_block_id = blockIdx.x;
int m_id = blockIdx.y;
int lane_id = threadIdx.x;
int warp_id = threadIdx.y;
int n_id = n_block_id * kColsPerThreadBlock + warp_id;
int thread_id = warp_id * kWarpSize + lane_id;
const int n_block_id = blockIdx.x;
const int m_id = blockIdx.y;
const int lane_id = threadIdx.x;
const int warp_id = WarpUniform(threadIdx.y);
const int n_id = n_block_id * kColsPerThreadBlock + warp_id;
constexpr int k_per_iter = 256;
int k_iter = k / k_per_iter;

// blocks_per_k is the number of scales and zero points on the k dim
const int b_zp_k = (blocks_per_K + 1)/ 2;

extern __shared__ char shared_buffer[];

// load scale to shared buffer
T* b_scale_vec = (T*)shared_buffer;
uint8_t* b_zp_vec = reinterpret_cast<uint8_t*>(b_scale_vec + kColsPerThreadBlock * blocks_per_K);
int offset = n_block_id * kColsPerThreadBlock * blocks_per_K;
for (int i = thread_id; i < kColsPerThreadBlock * blocks_per_K; i += kColsPerThreadBlock * kWarpSize) {
for (int i = warp_id * kWarpSize + lane_id; i < kColsPerThreadBlock * blocks_per_K; i += kColsPerThreadBlock * kWarpSize) {

Check warning on line 176 in onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu

View workflow job for this annotation

GitHub Actions / cpplint

[cpplint] onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu#L176

Lines should be <= 120 characters long [whitespace/line_length] [2]
Raw output
onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu:176:  Lines should be <= 120 characters long  [whitespace/line_length] [2]
b_scale_vec[i] = scales_data[offset + i];
}

int zp_offset = n_block_id * kColsPerThreadBlock * b_zp_k;
for (int i = thread_id; i < kColsPerThreadBlock * b_zp_k; i += kColsPerThreadBlock * kWarpSize) {
b_zp_vec[i] = zero_points != nullptr ? zero_points[zp_offset + i] : uint8_t(0x88);
const int b_zp_k = (blocks_per_K + 1) / 2;
uint8_t* b_zp_vec = reinterpret_cast<uint8_t*>(b_scale_vec + kColsPerThreadBlock * blocks_per_K);
if constexpr (has_zero_point) {
int zp_offset = n_block_id * kColsPerThreadBlock * b_zp_k;
for (int i = warp_id * kWarpSize + lane_id; i < kColsPerThreadBlock * b_zp_k; i += kColsPerThreadBlock * kWarpSize) {

Check warning on line 184 in onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu

View workflow job for this annotation

GitHub Actions / cpplint

[cpplint] onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu#L184

Lines should be <= 120 characters long [whitespace/line_length] [2]
Raw output
onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu:184:  Lines should be <= 120 characters long  [whitespace/line_length] [2]
b_zp_vec[2 * i] = (zero_points[zp_offset + i] & 0x0f);
b_zp_vec[2 * i + 1] = (zero_points[zp_offset + i] >> 4);
}
b_zp_vec += warp_id * b_zp_k * 2;
}
__syncthreads();

a_data += m_id * k;
b_data_quant += n_id * blocks_per_K * (block_size / 2);
a_data += m_id * k + (lane_id << 3);

const int scale_col_offset = warp_id * blocks_per_K;
const int zp_col_offset = warp_id * b_zp_k;
b_scale_vec += warp_id * blocks_per_K;

float sum = 0.f;
T sums[8] = {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
int k_id = 0;
for (; k_id < (k & 0xffffff00); k_id += k_per_iter) {
const int t_k = k_id + (lane_id << 3); // k index for this thread
const int t_meta_k = t_k / block_size; // k index for this thread, points to the scale and zero point
uint32_t value = *(reinterpret_cast<const uint32_t*>(b_data_quant + (t_k >> 1)));
T scale = b_scale_vec[scale_col_offset + t_meta_k];
uint8_t zp = b_zp_vec[zp_col_offset + t_meta_k/2];
zp = (t_meta_k & 0x01) ? (zp >> 4) : (zp & 0x0f);
sum += AccumulateEightElements(value, scale, zp, a_data + k_id + (lane_id << 3));
}
int t_meta_k = lane_id * 8 / block_size;
b_data_quant += n_id * blocks_per_K * (block_size / 2) + lane_id * 4;

#define UnRollReduction(unroll_size) \
do { \
constexpr int kUnroll = unroll_size; \
constexpr int kUnrollMask = 0xffffffff & (~(kUnroll * k_per_iter - 1)); \
for (; k_id < (k & kUnrollMask); k_id += kUnroll * k_per_iter) { \
_Pragma("unroll") for (int i = 0; i < kUnroll; i++) { \
uint32_t value = *(reinterpret_cast<const uint32_t*>(b_data_quant + k_per_iter / 2 * i)); \
T scale = b_scale_vec[t_meta_k + k_per_iter / block_size * i]; \
uint8_t zp = 8; \
if constexpr (has_zero_point) { \
zp = b_zp_vec[t_meta_k + k_per_iter / block_size * i]; \
} \
AccumulateEightElements(value, scale, zp, a_data + k_id + i * k_per_iter, sums); \
} \
b_data_quant += k_per_iter / 2 * kUnroll; \
t_meta_k += k_per_iter / block_size * kUnroll; \
} \
} while (false)

UnRollReduction(16);
UnRollReduction(4);
UnRollReduction(1);
#undef UnRollReduction

// handle reminder
if (k_id + lane_id * 8 < k) {
const int t_k = k_id + (lane_id << 3); // k index for this thread
const int t_meta_k = t_k / block_size; // k index for this thread, points to the scale and zero point
uint32_t value = *(reinterpret_cast<const uint32_t*>(b_data_quant + k_iter * 128 + lane_id * 4));
T scale = b_scale_vec[scale_col_offset + t_meta_k];
uint8_t zp = b_zp_vec[zp_col_offset + t_meta_k/2];
zp = (t_meta_k & 0x01) ? (zp >> 4) : (zp & 0x0f);
sum += AccumulateEightElements(value, scale, zp, a_data + k_id + (lane_id << 3));
uint32_t value = *(reinterpret_cast<const uint32_t*>(b_data_quant));
T scale = b_scale_vec[t_meta_k];
uint8_t zp = 8;
if constexpr (has_zero_point) {
zp = b_zp_vec[t_meta_k];
}
AccumulateEightElements(value, scale, zp, a_data + k_id, sums);
}

float sum = (float)(sums[0] + sums[1] + sums[2] + sums[3] + sums[4] + sums[5] + sums[6] + sums[7]);

Check warning on line 236 in onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu

View workflow job for this annotation

GitHub Actions / cpplint

[cpplint] onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu#L236

Using C-style cast. Use static_cast<float>(...) instead [readability/casting] [4]
Raw output
onnxruntime/contrib_ops/cuda/quantization/matmul_nbits.cu:236:  Using C-style cast.  Use static_cast<float>(...) instead  [readability/casting] [4]
// warp reduction
for (int i = 16; i > 0; i = i / 2) {
sum += __shfl_down_sync(0xffffffff, sum, i);
Expand All @@ -152,7 +242,7 @@ __global__ void MatMulFloatInt4Kernel(
if (lane_id == 0) {
output[m_id * n + n_id] = sum;
}
}
} // namespace cuda

template <class T>
bool TryMatMul4Bits(
Expand All @@ -173,28 +263,35 @@ bool TryMatMul4Bits(
dim3 blocks((n + kColsPerThreadBlock - 1) / kColsPerThreadBlock, m);
dim3 threads(kWarpSize, kColsPerThreadBlock);
int blocks_per_K = (k + block_size - 1) / block_size;
int blocks_per_thread_block = blocks_per_K * kColsPerThreadBlock;
int shared_mem_size = sizeof(T) * blocks_per_thread_block + blocks_per_thread_block / 2;
int shared_mem_size = sizeof(T) * blocks_per_K * kColsPerThreadBlock +
(zero_points != nullptr ? (blocks_per_K + 1) / 2 * kColsPerThreadBlock * 2 : 0);
if (shared_mem_size > shared_mem_per_block) {
return false;
}

#define MatMulFloatInt4KernelDispatch(block_size) \
if (nullptr != zero_points) { \
MatMulFloatInt4Kernel<T, block_size, true><<<blocks, threads, shared_mem_size, stream>>>( \
output, a_data, b_data_quant, scales_data, zero_points, m, n, k, blocks_per_K); \
} else { \
MatMulFloatInt4Kernel<T, block_size, false><<<blocks, threads, shared_mem_size, stream>>>( \
output, a_data, b_data_quant, scales_data, zero_points, m, n, k, blocks_per_K); \
}

if (16 == block_size) {
MatMulFloatInt4Kernel<T, 16><<<blocks, threads, shared_mem_size, stream>>>(
output, a_data, b_data_quant, scales_data, zero_points, m, n, k, blocks_per_K);
MatMulFloatInt4KernelDispatch(16);
} else if (32 == block_size) {
MatMulFloatInt4Kernel<T, 32><<<blocks, threads, shared_mem_size, stream>>>(
output, a_data, b_data_quant, scales_data, zero_points, m, n, k, blocks_per_K);
MatMulFloatInt4KernelDispatch(32);
} else if (64 == block_size) {
MatMulFloatInt4Kernel<T, 64><<<blocks, threads, shared_mem_size, stream>>>(
output, a_data, b_data_quant, scales_data, zero_points, m, n, k, blocks_per_K);
MatMulFloatInt4KernelDispatch(64);
} else if (128 == block_size) {
MatMulFloatInt4Kernel<T, 128><<<blocks, threads, shared_mem_size, stream>>>(
output, a_data, b_data_quant, scales_data, zero_points, m, n, k, blocks_per_K);
MatMulFloatInt4KernelDispatch(128);
} else {
ORT_THROW("block size ", block_size, " is not supported");
}

#undef MatMulFloatInt4KernelDispatch

return true;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def profile():
dims_m = [1]
for dt in dtypes:
for m in dims_m:
for n, k in ((4096, 4096), (4096, 12288), (12288, 4096)):
for n, k in ((4096, 4096), (4096, 12288), (12288, 4096), (4096, 11008), (11008, 4096),(2*11008, 4096),):
profile_with_args(m, n, k, dt, False)
print()

Expand Down
15 changes: 13 additions & 2 deletions onnxruntime/test/contrib_ops/matmul_4bits_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,8 @@ void QuantizeDequantize(std::vector<float>& raw_vals,
tp.get());
}

void RunTest(int64_t M, int64_t N, int64_t K, int64_t block_size, bool has_zeropoint, bool use_float16) {
void RunTest(int64_t M, int64_t N, int64_t K, int64_t block_size, bool has_zeropoint,
bool use_float16, float fp16_abs_error = 0.02f) {
RandomValueGenerator random{1234};
std::vector<float> input0_vals(random.Gaussian<float>(std::vector<int64_t>({M, K}), 0.0f, 0.25f));
std::vector<float> input1_f_vals(random.Gaussian<float>(std::vector<int64_t>({K, N}), 0.0f, 0.25f));
Expand Down Expand Up @@ -117,7 +118,7 @@ void RunTest(int64_t M, int64_t N, int64_t K, int64_t block_size, bool has_zerop
}

test.AddOutput<MLFloat16>("Y", {M, N}, ToFloat16(expected_vals));
test.SetOutputAbsErr("Y", 0.02f);
test.SetOutputAbsErr("Y", fp16_abs_error);

std::vector<std::unique_ptr<IExecutionProvider>> execution_providers;
execution_providers.push_back(DefaultCudaExecutionProvider());
Expand Down Expand Up @@ -163,6 +164,16 @@ TEST(MatMulNBits, Float16) {
}
}

TEST(MatMulNBits, Float16Large) {
for (auto block_size : {16, 32, 64, 128}) {
for (auto symmetric : {false, true}) {
RunTest(1, 4096, 4096, block_size, symmetric, true, 0.05);
RunTest(1, 4096, 11008, block_size, symmetric, true, 0.05);
RunTest(1, 11008, 4096, block_size, symmetric, true, 0.05);
}
}
}

#endif
} // namespace test
} // namespace onnxruntime
Expand Down

0 comments on commit bb2a6df

Please sign in to comment.